masihus

Operator's Manual EM 2140 **Dual Source Energy Meter**

Please read the manual carefully before Installation/Configuration

MASIBUS AUTOMATION AND INSTRUMENTATION PVT. LTD.

Phone: +91-79-23287275-79; Fax: +91-79-23287281-82

Email: sales@masibus.com Customer Support: support@masibus.com Web: www.masibus.com

RUN MODE

Issue No: 02

8

Doc. Ref. No. m20b/om/101

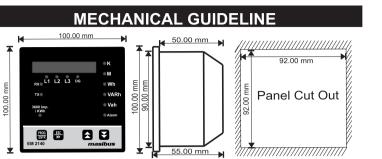
Calculated Parameters Over Display & Modbus Active Energy, Overflow Count Total Energy EB - Electricity Board Reactive Energy, Overflow Count Apparent Energy, Overflow Count DG -Diesel Generator

INTRODUCTION **PRODUCT OVERVIEW**

Masibus EM 2140 is an easy-to-use, low cost electrical Energy meter that offers all the basic measurement capabilities required for monitoring an electrical installation.

EM 2140 is available in flush panel mount enclosure having front panel keys for easy set up. EM 2140 has Class 1.0 accuracy as per IS 13779/IEC 62053-21. The CT/PT ratio and installation type is site selectable, making the meter possible to be used in various types of three phase installations.

More than a basic metering, it optionally provides RS485 port with Modbus-RTU protocol & also Relay/ Pulse output.


EM2140 has EB/DG dual source energy measurement option for measurement of energy through Electricity Board or Diesel Generator.

EM 2140 provides energy measurement along with ON hour & RUN (Load) Hour, thus helping to measure and control energy cost.

Meter stores energy and programmed parameters into its non-volatile Permanent memory.

Ordering code Output Model Accuracy Communication Dual source EM 2140 S Class 1.0 None N None None Ν Pulse Output RS485 Modbus 1 DG 2 Relay Output List Of Accessories

Meter Type

Input

63.5V L-N to 240V L-N

1 to 9999 Programmable

0.5VA per phase

0.02A to 6A

50 A (3sec)

45 to 65 Hz

10mA

0.25VA per phase

1 to 9999 Programmable

For 5A CT: 8A (Continuous)

For 1A CT: 2A (Continuous)

Display & Keys

Kilo & Mega Indication

Energy Pulse output

100-265VAC (to select DG Energy)

Phase healthy & reversal indication

Alarm and RS-485 communication

PROG/Enter, Esc/Shift, UP, Down

1 line 8 digit 0.36" [9.144 mm], 7-segment LED

Various energy parameters [Wh, VARh, VAh, DG]

1 to 5A

20V to 350V (L-N) or 34V to 620V (L-L) @ 240V Nominal Voltage

1.2 x Nominal Voltage (Continuous)

1.5 x Nominal Voltage (3 sec)

Configurable for 3Ph3W or 3Ph4W system

3Ph4W/ 3Ph3W (Site selectable)

Voltage

Burden

PT Ratio

Overload

Current

Burden

CT Ratio

Overload

Frequency

DG Sense

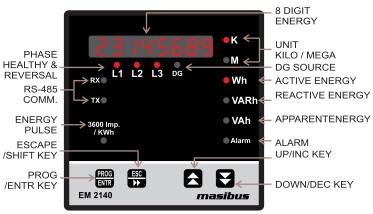
Display

Keys

Starting Current

Status LED Indication

Direct Current


Secondary Current

Direct Voltage

PT Secondary

(Nominal Voltage)

FRONT PANEL PICTURE

PROG ENTR PROG/ENTR

RUN mode: If Key remain pressed for 4 Sec, goes into PROG mode PROG mode: On key press - If in view mode goes into edit mode. If in edit mode goes into view mode.

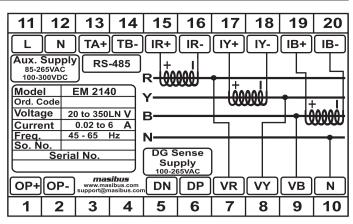
ESC/SHIFT

PROG mode: In edit mode Shift Digit. In view mode key press is used to exit from PROG mode to RUN mode.

RUN mode: Key press is used to display previous parameter.

PROG mode: · Increment value in edit mode Display previous configuration parameter in view mode

DEC/DOWN


RUN mode: Key press is used to display next parameter.

PROG mode: Decrement value in edit mode Display next configuration parameter in view mode

SPECIFICATION

Over Modbus only L1-L2, L2-L3, L1-L3 and Average (3Ph3) Voltage L1-N, L2-N, L3-N & average (1Ph & 3Ph Current All phase currents & their average Phase wise and System PF Frequency System Frequency Active Power Power (Phase wise **Reactive Power** & Total) **Apparent Power** Unbalance Current Unbalance Voltage Unbalance Special Features Over Modbus only ON Hour EB - Load Hour up to 65000 hours Recording DG- Load Hour **PINTR Power** up to 65000 PINTR counts Interruption count Accuracy Voltage ±0.5% of reading ±0.5% of reading Current Frequency ±0.5% of reading Power Factor ±0.5% of FS ±1.0% of reading ± 0.01% of FS Active Power*(≥0.02 of Ib) Reactive Power*(≥0.02 of Ib) ±2.0% of reading ± 0.01% of FS Apparent Power*(≥0.02 of Ib) $\pm 2.0\%$ of reading $\pm 0.02\%$ of FS Active Energy* Class 1.0 as per IS 13779/ IEC 6 Reactive Energy* Class 2.0 as per IS 13779 Apparent Energy* Class 2.0 (*PF 0.5 Lag-1.0 - 0.8 Lead Applicable for Power & Energy Par Isolation (Withstanding voltage) Between primary terminals* and secondary terminals**: At least 2000 V AC for 1 m Between primary terminals*: At least 2000 V AC for 1 minute Between secondary terminals**: At least 2000 V AC for 1 minute Primary terminals indicate Aux Supply, voltage i/p, current i/p & EB/DG input ** Secondary terminals indicate Communication σ/p and Pulse/Relay σ/p Insulation resistance: 20M Ω or more at 500 V DC between terminals Auxiliary Power Supply 85-265VAC,50/60Hz or 100-300VDC Power Supply Burden <3VA

REAR PANEL PICTURE

TERMINAL CONNECTION

1- OP+ = Relay/Pulse output Positive. 2- OP- = Relay/Pulse output Negative. 5- DN = DG Input Negative. 6- DP = DG Input Positive.

7- VR = R phase voltage connection. 8- VY = Y phase voltage connection. 9- VB = B phase voltage connection.

10- N = Neutral point for three phase four wire system.

11- L = AUX Supply Positive. 12- N = AUX Supply Negative. 13- TA+ = RS - 485 Positive Terminal. 14- TB- = RS - 485 Negative Terminal.

15- IR+ = Input terminal for R phase current connection. 16- IR- = Output terminal for R phase current connection.

17- IY+ = Input terminal for Y phase current connection. 18- IY- = Output terminal for Y phase current connection.

19- IB+ = Input terminal for B phase current connection.

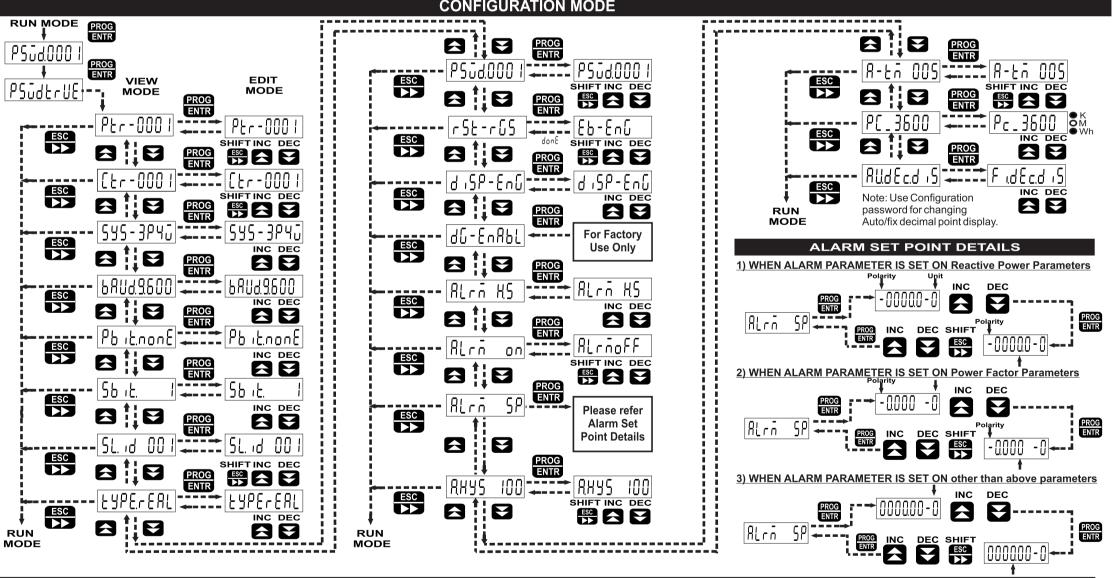
20- IB- = Output terminal for B phase current connection.

		Output
W & 3Ph4W)	Communication Outp	•
4W)	Interface	RS485
,	Baud Rate	9600, 19200, 38400 (Selectable)
	Parity	None, Odd, Even (Selectable)
	Stop bit	1, 2 (Selectable)
	Protocol	Modbus-RTU
	Relay Output (Option	al in lieu of pulse o/p)
	AC Rating	250V, 5A
	DC Rating	±30V, 5A
	Relay Set Point	High Side or Low Side Option
	Relay O/P Parameters [Field Selectable]	 Phase Volt / Avg. Volt / Phase Current / Avg. Current / Sys. Freq. / Phase Watt / Sys. Watt / Phase VAR / Sys. VAR / Phase VA / Sys. VA / Phase PF / Sys.
	Relay Contact Type	SPNO [Factory Default] SPNC [Contact Factory Before Ordering]
	Pulse Output (Option	al in lieu of relay o/p)
	Туре	WH
	Pulse rate	3600 pulses per Energy
	Pulse duration	40 mSec ± 10%
	Output Type Rating	Open collector [External Excitation Required] 24 VDC @ 20 mA
		Environmental
	Operating temperature	0 to 55 °C
6	Storage temperature	-10 to 70°C
6	Relative Humidity	30 to 95% RH non-condensing
62053-21	Warm up time	5 minutes
	wann up une	Physical
	Mounting Type	Panel mount
rameter)	Size (in mm)	100 (H) x 100(W) x 55 (D)
ninute	Front Bezel (in mm)	100 (H) x 100(W)
militie	Panel cutout (in mm)	92 (H) x 92(W)
	Depth behind panel	50 mm
	Material	ABS
	Accessory	2 Panel mount clamps
	Weight	0.3 Kg
	Enclosure Protection	IP50 front fascia; Overall IP20
	Terminal & Cable Size	Barrier Type terminal, Cable Size [3 mm²]

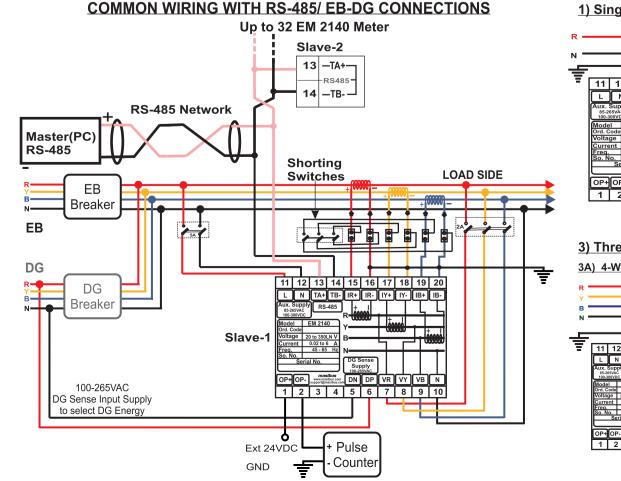
CONFIGURATION MODE

 $\mathbf{\overline{}}$

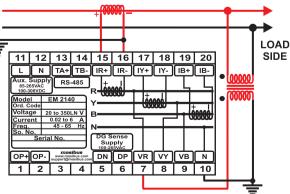
.



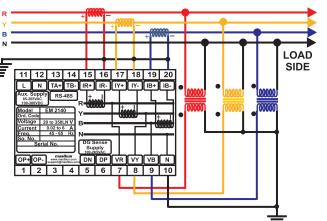
Note: 1) If EB- Overflow KVah >= 1 and DG- Overflow Kvah >= 1, then all pages will be displayed as per RUN mode Page Matrix

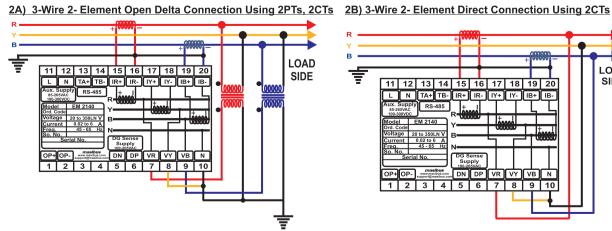

2) If EB- Overflow KVah = 0 and DG- Overflow Kvah = 0, then only 11, 13, 21, 23, 31, 33 pages will be displayed.

3) If EB- Overflow KVah >= 1 and DG- Overflow Kvah = 0, then only 11, 12, 13, 21, 22, 23, 31, 32, 33 pages will be displayed. 4) If EB- Overflow KVah = 0 and DG- Overflow Kvah >= 1, then only 11,13,14,21,23,24,31,33,34 pages will be displayed. 5) If DG Enable option is enabled then both EB and DG related parameters will display, else only EB related parameter will be displayed.(Without EbEnErGy Text)

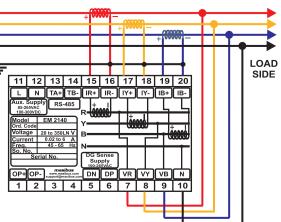

Note: The display can switch from auto to fix display only if the Kvah energy value < 999999.99 Kvah. If this energy value is more than the limit then Energy reset must be required.

WIRING DIAGRAMS

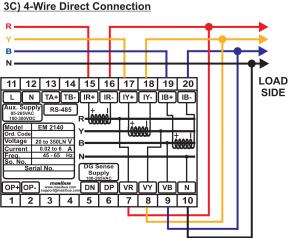




3) Three Phase Four Wire System


3A) 4-Wire Wye-3 Element Connection Using 3PTs, 3CTs

2) Three Phase Three Wire System


3B) 4-Wire Wye-3 Element Direct Connection Using 3CTs

OP+OP-

L N TA+TB-IR+IR-IY+IY-IB+IB-

1 2 3 4 5 6 7 8 9 10

DN DP VR VY VB

LOAD

SIDE

MODBUS DETAILS

1) Modbus Register Map for 3P4W AND 3P3W parameters

Data read Query = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x No. of data word, High]. [0 x No. of data word. Low] [0 x CRC Low] [0 x CRC High]

Function Code = 0X04

Address between 30001 to 30087

No. of data word ≤ 88 & in multiple of 2 as all data are of 4 Bytes [Long & Real]. Enter only Even value (data word length).

Response = [0 x Slave Id], [0 x Fun. Code], [Byte count], [Data High], [Data Low] [Data. High], [Data. Low] [0 x CRC Low] [0 x CRC High]

[Data Format: Long & Real]

		Measured p	arameter	werde	Multiplication Factor
S.No.	Address	3P4W 3P3W		words	(if data type is long)
1	30001	Frequency	F re qu enc y	2	0.01
2	300 03	1. PF	1_2. PF	2	0.001
3	300 05	2. PF	Reserved	2	0.001
4	300 07	3. PF	3_2.PF	2	0.001
5	300 09	A. PF	A. PF	2	0.001
6	300 11	1. Vrms	Vrms 1*2	2	0.1
7	300 13	2. Vrms	Vrms 3*1	2	0.1
8	300 15	3. Vrms	Vrms 2*3	2	0.1
9	300 17	A.Vms	A Vrms	2	0.1
10	300 19	V m s 1*2	Reserved	2	0.1
11	30021	V m s 2*3	Reserved	2	0.1
12	30023	Vms 3*1	Reserved	2	0.1
13	300 25	1. Irms	1. Irms	2	0.001
14	300 27	2. lrms	Reserved	2	0.001
15	300 29	3. Irms	3. Irms	2	0.001
16	300 31	A. Irms	A. Ims	2	0.001
17	300 33	Reserved	Reserved	-	-
18	300 35	1. Watt	1_2.Watt	2	1
19	300 37	2. Watt	Reserved	2	1
20	300 39	3. Watt	3 2. Watt	2	1
21	30041	S. Watt	S. Watt	2	1
22	30043	1. Var	1 2. Var	2	1
23	30045	2.Var	Reserved	2	1
24	30047	3. Var	3 2.Var	2	1
25	30049	S. Var	S.Var	2	1
26	300 51	1. VA	1 2.VA	2	1
27	300 53	2. VA	Reserved	2	1
28	300 55	3. VA	3 2.VA	2	1
29	300 57	S.VA	S.VA	2	1
30	300 59	1. phase rev. indication	1. phase rev. indication	2	1
31	30061	2. phase rev. indication	Reserved	2	1
32	30063	3. phase rev. indication	3. phase rev. indication	2	1
33	300 65	T. KWh-EB	T. KWh-EB	2	0.1
34	30067	T. KWh-DG	T. KWh-DG	2	0.1
35	300 69	T.KVarh-EB	T. KVarh-EB	2	0.1
36	30071	T. KV arh-DG	T . KV arh-DG	2	0.1
37	30073	T. KV ah-EB	T. KVah-EB	2	0.1
38	30075	T. KVah-DG	T. KVah-DG	2	0.1
39	30077	1. P has e A ng le	1_2. Phase Angle	2	0.01
40	30079	2. Phase Angle	Reserved	2	0.01
41	30081	3. Phase Angle	3 2. Phase Angle	2	0.01
42	300 83	V. Unbalance	V. Unbalance	2	0.01
43	300 85	I. Unbalan ce	I. Un balance	2	0.01
44	30087	EB/DG Runni (0-EB Running,1-		2	1

2) Energy Overflow Count:

Function Code = 0X04Address between 30150 to 30155 No. of data word \leq 6 & in multiple of 1 as all data are of 2 Bytes [Decimal]. [Data Format: Only in Decimal]

S. No.	Address	Measured parameter	words
1	30150	Wh_EB -ovcnt	1
2	30151	Wh_DG-ovcnt	1
3	30152	VARh_EB-ovcnt	1
4	30153	VARh_DG-ovcnt	1
5	30154	Vah_EB -ovcnt	1
6	30155	Vah_DG -ovcnt	1

3) ON Hour / LOAD Hour / Power Interruption

Count: Function Code = 0X04Address between 30301 to 30307 No. of data word \leq 7 & in multiple of 1 as all data are of 2 Bytes [Decimal]. [Data Format: Only in Decimal]

S. No.	Address	Measured parameter	words
1	30301	ON HOUR	1
2	30302	ON MIN	1
3	30303	EB RUN HOUR	1
4	30304	EB RUN MIN	1
5	30305	DG RUN HOUR	1
6	30306	DG RUN MIN	1
7	30307	PWR INTR. COUNT	1

IMPORTANT NOTES

4) Modbus Register Map for configuration parameters

A) Read Holding Register

Data read Query = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x No. of data word, High], [0 x No. of data word. Low] [0 x CRC Low] [0 x CRC High]

Function Code = 0X03

Address between 40101 to 40118 No. of data word ≤ 18 & in multiple of 1 as all data are of 2 Bytes [Decimal].

Response = [0 x Slave Id], [0 x Fun. Code], [Byte count], [Data High], [Data Low] [Data. High], [Data. Low] [0 x CRC Low] [0 x CRC High]

B) Preset Single Holding Register

Data write Query = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x Data High], [0 x Data Low], [0 x CRC Low] [0 x CRC High]

Function Code = 0X06

Address Any Single Register between 40101 to 40118 Data = Data of 1 word, as all data are of 2 Bytes [Decimal].

Response = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x Data High], [0 x Data Low], [0 x CRC Low] [0 x CRC High]

C) Preset Multiple Register

Data write Query = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x No.of Reg.High], [0 x No.of Reg.Low], [0 x No.of Byte], [0 x Data High], [0 x Data Low], [0 x CRC Low] [0 x CRC High]

Function Code = 0X16

Address Multiple Register 40001.

Data = Data of 2 word, as all data are of 4 Bytes [Swapped Float].

Response = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x No.of Reg.High], [0 x No.of Reg.Low], [0 x CRC Low] [0 x CRC High]

[Data Format: only in Decimal]

S.	Address	Measured parameter		words	Min.	Max.	*2 Ala	rm Param	eters (40111)
No.	Address	Parameter	Description	worus	value	value	Value	Parameter	Descreption
1	40001	ALLA SP	Alarm Setpoint	2	Refer ⁻	Table 1	0	AlrãoFF	Relay OFF
2	40101	PSūd.	Password	1	1	9999	1	r-PHuolt	R-Phase Voltage
3	40102	SL.id	Slave address	1	1	247	2	Y-PHuolt	Y-Phase Voltage
4	40103	6AN9.	Baud rate (9600, 19200, 38400)	1	9600	38400	3	b-PHuolt RuG.uolt	B-Phase Voltage Average Voltage
5	40104	Ρ6,Ε.	Parity bit (0-none,1- odd,2-even)	1	0	2	5	РНСИ У-РНСИ Б-РНСИ	R-Phase Current Y-Phase Current
6	40105	Sb ،Ł.	Stop bit	1	1	2	/ 8	RuG (Urr	B-Phase Current Average Current
7	40106	595-	System type (0 – 3P4W, 1 – 3P3W)	1	0	1	9 10	595 .FrE9	System Frequency R-Phase Power
8	40107	[tr-	CT Ratio	1	1	9999	10	9-PHRCE	Y-Phase Power
9	40108	PEr-	PT Ratio	1	1	9999	12	6-PHRCE	B-Phase Power
10	40109	ESPE.	Data type (0-Real,1-Long)	1	0	1	13 14	SYS ACE	System Power R-Phase Reactive Power
11	40110	- ۶۲ ا	Energy Display type*1	1	0	3	15	9-PHr .8CE	Y-Phase Reactive Power
12	40111	Alrā on	Alarm Parameter Selection* ²	1	0	25	16 17	6-PHr .RCE 595 r .RCE	B-Phase Reactive Power System Reactive power
13	40112	8-Eñ	Alarm Time	1	0	100	18	r - PHRPP	R-Phase Apparent Power
14	40113	PC_3600	Pulse constant unit*3	1	0	2	19 20	У-РНАРР 6-РНАРР	Y-Phase Apparent Power
15	40114	8.895	Hysteresis	1	0	100	20	595.822	B-Phase Apparent Power System Apparent Power
16	40115	ALLO H.S	Alarm type	1	0	1	22	C-PH PF	R-Phase Power Factor
17	40117	r5t-r65	Reset Individual Reg.* ⁴ (Write only)	1	78	84	23 24	У-РН PF 6-PH PF	Y-Phase Power Factor B-Phase Power Factor
18	40118	ALL-rSE	Reset all(Write only)*5	1	85	85	25	595.PF	System Power Factor

*1) ENERGY DISPLAY TYPE Note: 1) If data type is long in Energy meter

then set Swapped long in Modbus master. If data type is Real in Energy meter then set Swapped Float in Modbus master. 2) Energy will be in Kilo for Real data type and for Long data type multiply with constant stated to get energy in Kilo unit. 3) Ignore address which are not mentioned in the memory map as they are useful in 3P4W Mode. 4) Ignore value for Reserved in Modbus Memory

Map. 5) As per standard condition, negative sign of PF indicates lead and positive sign of PF indicates

Lag on Modbus.

0-KWH 1-KVARH 2-KVAH

***3) PULSE CONSTANT UNIT** 0-KILO 1-MEGA 2-GIGA *4) RESET INDIVIDUAL REG. 78-EB ENERGY 79-DG ENERGY 80-ALL ENERGY 81-EB HOURS 82-DG HOURS 83-ALL HOURS **84-PINTR COUNT**

3-KWH,KVARH,KVAH

<u>Table</u>	<u>1:</u>		
<u>Alarm</u>	SP	Parameter	Range

Parameter	Min Value	Max Value
Frequency	45	65
Power Factor	-1.0	1.0
Voltage	0	1000000
Current	0	10000
Active Power	0	200000000
Reactive Power	-200000000	200000000
Apparent Power	0	200000000

*5) RESET ALL 85-ALL REGISTER RST

TROUBLESHOOTING TIPS

General Setting & Condition for CT, PT ratio

ENERGY OVERFLOW RESET

Energy Pulse O/P Constant Setting

Confirm the connection as per configuration

Confirm that all energy parameters, Hour parameters & Power Interruption counter are going to start from zero, if not, make them zero by All Rst.

Apply proper CT/PT Ratio as per requirement, which must pass the below mathematical conditions for 3P3W and 3P4W.

For 3P4W

3x1.2xPT Sec. x1.2xCT Sec. x CT Ratio x PT Ratio < 2.000.000.000

For 3P3W

 $2x1.2x\sqrt{3}x$ Vratedx1.2xIratedx CT Ratio x PT Ratio < 2,000,000,000

For Serial communication, MODBUS-RTU, RS485, you will get real/long data from measurement.

Factory set Password to access the Program mode is 0001.

Some parameters in configuration are only for factory purposes so please don't disturb these parameters like DG Enable & System.

For modbus communication, follow the address map for 3p3w/3p4w Program mode will be same.

ON Hour, LOAD Hour & Power Interruption <u>Count</u>

ON Hour: The period for which the meter (supply) is ON

LOAD Hour: Indicates the period the Load is ON and has run. This counter accumulates as long as the average load is greater than the starting current 10mA set.

(ON, LOAD provides two quantity Hours and Minute on Modbus)

Power Interruption Count: Number of Supply Outages, means the number of Auxiliary Supply interruptions. If the meter Auxiliary Supply is from a UPS then the INTR (number of +nterruptions) will be zero (as long as the UPS stays ON), even if the Voltage Signals did die out from time to time.

Phase Healthy/Reversal Indication

For Phase Healthy Indication L1,L2,L3 LED will be ON respectively based on voltage/phase value>15V.

For not in connection, Phase non availability or Phase unhealthy[<15V] Indication respective LED will stay OFF.

Blinking of LEDs[L1/L2/L3] indicates CT reversal of that particular Phase or Phase interchange with some other Phase. In such cases please check wiring and phase connections properly.

However in some of the cases two or more wrong conditions will not let LED BLINK, So It is always recommended to check against standard Wiring Diagram for proper functionality.

Phase Healthy(Value 1) / Reversal(Value -1) Indication are also available on Modbus address (30059,30061,30063).

For Auto Decimal Display, when the energy greater than 999000.00 Mega, the overflow count will increment & energy register will reset.

For Fix Decimal Display, when the energy greater than 999999.99 Kilo, the overflow count will increment & energy register will reset.

For Auto Decimal Display:

Automatic reset Active [EB] register when the Active [EB] > 999000.00M and at that time WH EB Ov.count increment one time. As pulse frequency is 50 msec, i.e. in one second maximum 20 Then after Active [EB] energy started from zero. When WH EB pulses can be obtained, hence in one hour maximum 72000 pulses Ov.count>99 then WH_EB Ov.count become zero.

As above Active[EB] same as Active[DG], Reactive[EB] Reactive[DG] , Apparent[EB], Apparent[DG] Energy and that Overflow Count are increment and reset. But when Apparent[EB] Energy Count VA_EB Ov.count> 99 then all V rated = 240V, I rated = 5A, CT ratio = 40 and PT ratio = 100, three EB energy registers with Ov.counts are reset and same as Above meter can consume maximum of 4.8MWatt. also DG Energy Reset.

Energy Overflow Time Calculation

Example

For 110V PT Sec, and 1 A CT Sec. Energy meter is set for 100A and 66KV line with CT Ratio of 100 and PT Ratio of 600.

PT Primary = 66KV, PT Secondary = 110V Therefore PTR = 66KV/110V=600 select. CT Primary=100A, CT Secondary=1A Therefore CTR =

100A/1A=100 select in meter.

EB Energy consumed per hour will be 66kV X 100Amps = 6600KVAHr.

Time to overflow in Hr. = 999000.00MVAhr / 6600KvaHr = 151363 Hr

Days = 151363/24 = 6306 Days Years = 6306 / 365 = 17.27 Years / Total of Three Phase.

But our Apparent Energy Overflow Count Range are 1 to 99, therefore

Total Time to overflow in Years = 17.27*99 = 1709.73 Years /Total of Three Phase.

User has to manually reset All Rst, when installing the meter first time

Energy Calculation

Below formula used for finding the Total Active EB Energy for auto decimal display,

Total Active Energy = [Running Active EB Energy + (WH EB Ov.cnt * 999000.00M)]

Example:

Let's WH_EB Ov.cnt = 5, Running Active EB Energy = 203268.12 MWh then

Actually measured Total Active EB Energy = [203268.12 M + (5 * 999000.00M)] = 5198268.12 MWh

Above calculation is same for other energy (Active DG, Reactive EB, Reactive DG, Apparent EB and Apparent DG Energy) can be find out using respective Ov.cnt and running energy.

For Front Blinking LED, select energy unit (i.e.-KWh/MWh/GWh) as per your requirement using Program mode. But here you can get maximum output pulse frequency (& LED Blinking rate) up to 50 msec. so whenever you are using this feature; you should set value of Meter-Constant such a way so it will not cross the limit of 50 ms pulse frequency.

can be obtained.

Total no of impulses/second can be calculated as below (Vrate * Irate * CTR * PTR * Pulse Constant in Wh)/3600 <= 20.

Example: Meter specification

I.e. For 3600 pulses/KWh [3.6 pulses/Wh], it will generate 4800 pulses/sec as per above equation, [240*5*40*100*3.6/3600 = 4800] so it will not work for the meter as it is more than 20 pulses/sec I.e. For 3600 pulses/MWh [0.0036 pulses/Wh], it will generate 4.8 pulses/sec as per above equation, [240*5*40*100*0.0036/3600 = 4.8] so it will work for the meter as it is less than 20 pulses/sec. This is for single phase only, in case of three phases, energy will be multiplied by three in 3p4w and hence pulses should be calculated for three phase energy.

Energy Resolution on Modbus

Resolution of the energy parameter on the Modbus when data is transmitted in LONG format is 0.1KVAh/KWh/KVARh rather than 1VAh/Wh/VARh, which is possible when FLOAT data type is used. Because of the limitation of the Long Data type and to avoid frequent reset, Data is transmitted in with above-mentioned resolution.

Due to this resolution on display of the Meter will not be same as ON ModBus data, when data is transmitted in LONG format. Multiplication factor given on master side is 0.0001.

Example:

Lets say on modbus data transmitted is 20098798 then on the master side it will be

20098798 * 0.0001 = 2009.8798 MWh/MVAh/MVARh Which gives the resolution of the 0.1KWh/KVAh/KVARh as described above.

Sys. Energy Resolution on display (Auto Dec. Display)					
Display	/		Energy		
7 Segment	Unit	From	То	Resolution	
X.XXXXXXX	K	0 KWh	9.9999999 KW h	1mwh	
XX. XXX XXX	К	10 KWh	99.999999 KW h	10mwh	
XXX.XXXXX	K	100 KWh	999.99999 KW h	100 mwh	
X.XXXXXXXX	М	1000 KWh	9.9999999 MWh	1wh	
XX. XXX XXX	М	10 Mwh	99.999999 MWh	1wh	
XXX.XXXXX	М	100 Mwh	999.99999 MWh	100wh	
XXXX.XXXX	М	1000 Mwh	9999.9999 MWh	1Kwh	
XXX XX. XXX	М	10000 Mwh	99999.999 MWh	1 Kwh	
XXX XXX .XX	М	100000 Mwh	999000.00 MWh	10Kwh	

Sys. Ene	Sys. Energy Resolution on display (Fix Dec. Display)					
Display	'		Energy			
7 Segment	Unit	From	То	Resolution		
X.XX	K	0 KWh	9.99 KWh	10 Wh		
XX.XX	K	10 KWh	99.99 KWh	10 Wh		
XXX.XX	K	100 KWh	999.99 KWh	10 Wh		
XXXX.XX	K	1000 KWh	9999.99 KWh	10 Wh		
XXXXX.XX	K	10000 KWh	99999.99 KWh	10 Wh		
XXXXXXX.XX	K	100000 KWh	999999.99 KWh	10 Wh		

	r ossible Gause	r ossible solution
The display is OFF after applying control Power to the Energy Meter.	The Energy meter may not be Receiving the necess ary Power.	Verify that the Energy meter line (L) and neutral (N) terminals are Receiving the necessary power.
The data being displayed is inaccurate	Incorrect s etup values.	Check that the correct values have been entered for Energy meter setup parameters (CT and PT ratings, System Type).
Or not what you expect.	Incorrect voltage inputs.	Check Energy meter voltage input terminals to verify that a dequate voltage is present.
	Energy meter address is incorrect.	Check to see that the Energy meter is correctly addressed.
Cannot communicate with Energy meter from A remote personal computer.	En ergy meter baud rate (parity, stop bit) is incorrect.	Verify that the baud rate (parity, stop bit) of the Energy meter matches the baud rate (parity, stop bit) of all other devices on its communications link.
	Communic ations lines are improperly connected.	Verify the Energy meter communications connections interchange [A+] & [B-] lines
EB/DG ENERGY LOGGING	Improper DG connection	Connect properly as per diagram (COMMON WIRING WITH RS-485/ EB-DG CONNECTIONS)

SAFETY / WARNING PRECAUTIONS

Safety precautions

Dangerous voltages capable of causing death are sometimes present in this instrument. Before installation or beginning of any troubleshooting procedures the power to all equipment must be switched off and isolated. Units suspected of being faulty must be disconnected and removed first and brought to a properly equipped workshop for testing and repair. Component replacement and interval adjustments must be made by a company person only.

Warning precautions

· Before wiring, verify the label for correct model number and options. · Wiring must be carried out by personnel, who have basic electrical knowledge and practical experience.

- · All wiring must confirm to appropriate standards of good practice and local codes and regulations. Wiring must be suitable for voltage, current, and temperature rating of the system.
- · Beware not to over-tighten the terminal screws
- · Verify that the ratings of the output devices and the inputs as specified in this manual are not exceeded.
- · Upon receipt of the shipment remove the unit from the carton and inspect the unit for shipping damage. If any damage due to transit, report and claim with the carrier. Write down the model number and serial number for future reference when corresponding with our Customer Support Division. · Do not use this instrument in areas such as excessive shock, vibration, dirt. moisture, corrosive gases or rain. The ambient temperature of the areas
- should not exceed the maximum rating specified.

WARRANTY

Warranty does not apply to defects resulting from action of the user such as misuse, improper wiring, operation outside of specification, improper maintenance or repair, or unauthorized modification Masibus is not liable for special, indirect or consequential damages or for loss of profit or for expenses sustained as a result of a device malfunction, incorrect application or adjustment

Masibus' total liability is limited to repair or replacement of the product. The warranty set forth above is inclusive and no other warranty, whether written or oral, is expressed or implied