

# <u>User's Manual</u>

## **MULTI FUNCTION TRANSDUCER**



### Masibus Automation And Instrumentation Pvt. Ltd.

B/30, GIDC Electronics Estate, Sector-25, Gandhinagar-382044, Gujarat, India ☎ +91 79 23287275-79 +91 79 23287281-82 Email: support@masibus.com Web: <u>www.masibus.com</u>

## masibus<sup>•</sup>

### CONTENTS

| 1. INTRODUCTION                             |
|---------------------------------------------|
| Foreword4                                   |
| Purpose of manual4                          |
| Notice4                                     |
| Trademarks4                                 |
| Checking the Contents of the Package4       |
| Product overview                            |
| Features                                    |
| Product Ordering Code5                      |
| List of Accessories                         |
| Safety Precautions                          |
| 2. SPECIFICATIONS                           |
| 3. FRONT PANEL PICTURE                      |
| 3.1 Front Panel Picture                     |
|                                             |
| 4. TERMINAL CONNECTIONS12                   |
| 4.1 Front Panel Terminal Connections12      |
|                                             |
| 5. MECHANICAL GUIDELINE                     |
| 5.1 Front View                              |
| 5.2 Side View                               |
| 6. INSTALLATION GUIDELINE15                 |
| 6.1 Safety/Warning Precautions15            |
| 6.2 Common Wiring with RS-485 Connections16 |
| 6.3 Terminal Wiring Details 16              |
| 6.4 PTs and CTs                             |
| 7. CONFIGURATION GUIDELINES                 |
| 7.1 Modes of Operation                      |
| 7.2 Run Mode Detail                         |
| 7.3 Program Mode Detail 24                  |
| 7.4 Edit Mode Detail                        |
| 7.5 AUTO/MANUAL SCROLL                      |
| 7.6 RESET REGS                              |



| 8. MODBUS DETAILS                                    |    |
|------------------------------------------------------|----|
| 8.1 Modbus Register Map for 3P4W parameters          |    |
| 8.2 Modbus Register Map for 3P3W Parameters          |    |
| 8.3 Modbus Register Map for configuration parameters |    |
| 8.4 Exception Responses                              |    |
|                                                      |    |
| 9. ETHERNET DETAILS                                  |    |
| 9.1 Interface Standard                               |    |
| 9.2 Protocol                                         |    |
| 9.3 Modnet Register Map for 3P4W parameters          |    |
| 9.4 Modnet Register Map for 3P3W Parameters          | 39 |
| 9.5 Modnet Register Map for configuration parameters |    |
| 10. IMPORTANT NOTES                                  | 45 |
| 11. TROUBLESHOOTING TIPS                             |    |

### masibus

### **1. INTRODUCTION**

#### Foreword

Thank you for purchasing Multi function transducer. **MFT (Multi Function Transducer)** 

This manual describes the basic functions and operation methods. Please read through this user's manual carefully before using the product.

#### Purpose of manual

#### How to read this manual?

**Installer**: Read Chapters 3, 4, 5, 6, 10, 11 **System designer and new user**: Read All Chapters **Expert user**: Read Chapters 2, 4, 5, 6, 7, 8, 9

#### Regarding this user manual

- This manual should be provided to the end user. Keep an extra copy or copies of the manual in a safe place.
- Read this manual carefully to gain a thorough understanding of how to operate this product before starting operation.
- MFT is stands for MULTI FUNCTION TRANSDUCER throughout the document.
- Chapter 7 and 9 are for optional features. Read/use it if your device has LCD or Ethernet.

#### Notice

The contents of this manual are subject to change without notice as a result of continuous improvements to the instrument's performance and functions.

This manual describes the functions of this product. MASIBUS does not guarantee the application of these functions for any particular purpose.

Every effort has been made to ensure accuracy in the preparation of this manual. Should any errors or omissions come to your attention, however, please inform MASIBUS Sales office or sales representative. Under no circumstances may the contents of this manual, in part or in whole, be transcribed or copied without our permission.

#### Trademarks

Our product names or brand names mentioned in this manual are the trademarks or registered trademarks of Masibus Automation and Instrumentation (P) Ltd. (here in after referred to as **masibus**).

Adobe, Acrobat, and Postscript are either registered trademarks or trademarks of Adobe Systems Incorporated. All other product names mentioned in this user's manual are trademarks or registered trademarks of their respective companies.

#### Checking the Contents of the Package

Unpack the box and check the contents before using the product. If the product is different from which you have ordered, if any parts or accessories are missing, or if the product appears to be damaged, contact your sales representative.



#### **Product overview**

The MFT is a solid state TRANSDUCER Which accurately measures all quantities of the supply including all types of energies and gives corresponding Analog output 4-20mA or 0-10V w.r.t. electrical parameter measured except energies. it also have fully programmable Digital output for all energies. The MFT is based on Microcontroller, with a high degree of programmability.

The MFT meets the Accuracy requirements of IEC 60688.

The MFT has been programmed to operate as an intelligent front end measuring and storing device and to communicate continuously to a Master, all the data relevant for the purpose of SCADA, through isolated RS-485 port using MODBUS-RTU protocol.

The MFT is normally supplied readily pre-programmed for operation and can be directly installed in the usual manner. The MFT can be read manually or through a Master using MODBUS-RTU Protocol.

#### Features

- Four Analog & Two Digital Outputs [Isolated to each other]
- Up to 30 parameter can be mapped to Analog Output
- Fully Programmable
- Analog o/p accuracy as per IEC60688
- Accuracy class 0.5s / 0.2s as per IS14697/ IEC 62053-22 for Energy
- Compact, Light weight, Rugged, Reliable & Safe for User
- Aux powered & uses Switch mode power supply
- LCD with back-lit to display various parameters (optional)
- Auto Scrolling feature for easy readability for all parameters on LCD(optional)
- Ethernet communication(optional)
- ABS enclosure an insulator so safe for user
- Front panel LED output for calibration & measurement of selected type of energy
- Store energy register efficiently during power failure.
- Four Quadrant measurement for Power factor, Power & Energy (Active & Reactive)
- 1-Ph, 3Ph3W, 3Ph4W configurations
- Fast response time (<350mS).
- Easy configuration of different parameter through front fascia key. (optional)
- GUI based site configuration software for MFT..
- Microcontroller based TRUE RMS Measurement of electrical parameters.

### **Product Ordering Code**

| Ordering Code  |   |           |       |            |        |                |     |                |   |          |   |          |  |
|----------------|---|-----------|-------|------------|--------|----------------|-----|----------------|---|----------|---|----------|--|
| Model Accuracy |   |           | Analo | g Output   |        | Digital Output |     | Display (I CD) |   | Ethernet |   |          |  |
| model          |   | Accuracy  | Ου    | itput Type | No.    | of Output      | Dig | Digital Output |   |          |   | Ethernet |  |
| MFT            | Х |           | Х     |            | Х      |                | Х   |                | Х |          |   |          |  |
|                | 1 | Class 0.5 | 1     | 0-5V       | 1      | One            | Ν   | None           | Ν | None     | Ν | None     |  |
|                | 2 | Class 0.2 | 2     | 1-5V       | 2      | Two            | Y   | Two            | Y | Required | 1 | Yes      |  |
|                |   |           | 3     | 0-10V      | 3      | Three          |     |                |   |          |   |          |  |
|                |   |           | 4     | 4-20mA     | 4      | Four           |     |                |   |          |   |          |  |
|                |   |           | 5     | 0-20mA     |        |                |     |                |   |          |   |          |  |
|                |   |           | 6     | Special*   | * Cons | ult Factory    |     |                |   |          |   |          |  |

The unit has a nameplate affixed to the one side of the enclosure. Check the model and suffix codes inscribed on the nameplate to confirm that the product received is that which was ordered.

#### **List of Accessories**

The product is provided with the following accessories according to the model and suffix codes (see the table below). Check that none of them are missing or damaged.

| Sr. No. | Description of accessory              | Quantity |
|---------|---------------------------------------|----------|
| 1       | User manual                           | 1        |
| 2       | Anexture-1                            | 1        |
|         | (When Ordering code is with Ethernet) |          |
| 3       | Configuration software CD             | 1        |

#### **Safety Precautions**

The product and the instruction manual describe important information to prevent possible harm to users and damage to the property and to use the product safely.

Understand the following description (signs and symbols), read the text and observe descriptions.

WARNING This indicates a danger that may result in death or serious injury if not avoided.

This indicates a danger that may result in minor or moderate injury or only a physical damage if not avoided. masibus



### 2. SPECIFICATIONS

| System type              |                                                                         |
|--------------------------|-------------------------------------------------------------------------|
| 3PN4VV/ 3PN3VV (Site     | e selectable)                                                           |
| Voltago                  |                                                                         |
| Direct Voltage (AC RMS)  | $20V/to 350V/(I_{-}N)$ or $34V/to 620V/(I_{-}I_{-}) @ 240V/Nominal$     |
| Direct Voltage (AC RNIS) | 200 10 500 (L-N) 01 540 10 0200 (L-L) @ 2400 Normal                     |
| (Nominal Voltage)        | Configurable for 3Pb3W or 3Pb4W system                                  |
| Measurement Method       |                                                                         |
| Burdon                   |                                                                         |
| DT Patio                 | 1 to 0000 000 Programmable (Site selectable)                            |
|                          |                                                                         |
| Overload                 | 1.5 x Nominal Voltage (Continuous)                                      |
| Accuracy Range           | 10% - Vn - 120%                                                         |
| Current                  |                                                                         |
| Direct Current (AC RMS)  | 0.01 to 8A                                                              |
| CT Secondary Current     | 1 or 54 (Site selectable)                                               |
| Measurement Method       |                                                                         |
| Burden                   | $\sim 0.2$ V/A per phase                                                |
| CT Patio                 | 1 to 0000 000 Programmable                                              |
| Overload                 | For 5A CT: 8A Continuous/ 20A for 1Sec                                  |
| Ovendad                  | For 1A CT: 2A Continuous/ 20A for 1Sec                                  |
| Accuracy Pange           | 1% - In - 120%                                                          |
| Accuracy Mange           | 170 - 111 - 12070                                                       |
| Starting current         | 0.1% of Nominal Current                                                 |
| Frequency                | 45 to 65Hz                                                              |
| Display                  | 16x2 Backlight LCD                                                      |
|                          |                                                                         |
| Measured Parameters      |                                                                         |
| Voltage                  | L1-L2, L2-L3, L1-L3 and Average (3Ph3W & 3Ph4W)                         |
|                          | L1-N, L2-N, L3-N & average (1Ph & 3Ph4W)                                |
| Current                  | All phase currents & their average                                      |
| Frequency                | System Frequency                                                        |
| Power Factor             | Phase wise PF & Average PF                                              |
| Power                    | Active Power (W, KW & MW)                                               |
| (Phase wise & Total)     | Reactive Power(VAR, KVAR & MVAR)                                        |
|                          | Apparent Power (VA, KVA & MVA)                                          |
| Energy                   | Active Energy for Import & Export (Separate) (WH, KWh, MWh & GWh)       |
| (Phase wise & Total)     | Reactive Energy for lagging & leading (Separately) (VARh, KVARh,        |
|                          | MVARh & GVARh)                                                          |
|                          | Apparent Energy (VAh, KVAh, MVAh & GVAh)                                |
|                          |                                                                         |
|                          |                                                                         |
| Pulse output             |                                                                         |
|                          | 2 digital outputs                                                       |
|                          |                                                                         |
| Ture                     |                                                                         |
| Type<br>Bulaa roto       | WIT/VART/VART                                                           |
| Puise fale               | Programmable from 1 to 65000 pulses per $KVTI[I] / KVTI[E] / KVARTI[I]$ |
|                          | of total                                                                |
| Pulse Duration           | 40  mSec + 10%                                                          |
|                          | 10 mood ± 10/0                                                          |
|                          |                                                                         |

| Analog output - Optional                                |        |                                            |                                            |  |  |  |
|---------------------------------------------------------|--------|--------------------------------------------|--------------------------------------------|--|--|--|
| No. of Outputs                                          | 4      |                                            |                                            |  |  |  |
| Output type (factory set)                               | 0/4    | 0/4-20mA, 0/1-5V, 0-10V DC                 |                                            |  |  |  |
| [Current/ Voltage]                                      |        |                                            |                                            |  |  |  |
| Response time                                           | <3     | <350mS (except frequency)                  |                                            |  |  |  |
| Maximum No. of parameters                               | 31     | 31 Electrical Parameters                   |                                            |  |  |  |
| mapped to o/p                                           |        |                                            |                                            |  |  |  |
| O/P Impedance                                           | <7     | 50 Ω for 4-20mA O/P                        |                                            |  |  |  |
|                                                         | >2     | KΩ for 0-10V O/P                           |                                            |  |  |  |
| Communication Output                                    |        |                                            |                                            |  |  |  |
| 1) Serial Communication                                 |        |                                            |                                            |  |  |  |
| Interface                                               | RS     | 485                                        |                                            |  |  |  |
| Baud rate                                               | 96     | 00, 19200, 38400 (Selectable)              |                                            |  |  |  |
| Start bit                                               | 1      |                                            |                                            |  |  |  |
| Stop bit                                                | 1      |                                            |                                            |  |  |  |
| Parity                                                  | No     | ne                                         |                                            |  |  |  |
| Protocol                                                | Mc     | odbus-RTU                                  |                                            |  |  |  |
| 2) Ethernet Communication –                             | opt    | ional                                      |                                            |  |  |  |
| Interface                                               | RJ     | -45                                        |                                            |  |  |  |
| Baud rate                                               | 10     | 100 Mbps                                   |                                            |  |  |  |
| Protocol                                                | MC     | MODNET                                     |                                            |  |  |  |
|                                                         |        |                                            |                                            |  |  |  |
| Auxiliary Power Supply                                  |        |                                            |                                            |  |  |  |
| Power Supply                                            | 85     | -265VAC, 50/60Hz or 100-300VDC             |                                            |  |  |  |
| Burden                                                  | 10     | VA approx. (basic model)                   |                                            |  |  |  |
|                                                         |        |                                            |                                            |  |  |  |
| Accuracy                                                |        |                                            |                                            |  |  |  |
| Class 0.2 Class 0.5<br>Optional (Standard)              |        |                                            |                                            |  |  |  |
| Analog Output                                           |        | ±0.2% as per IEC60688                      | ± 0.5% as per IEC60688                     |  |  |  |
| Instantaneous Parameters o<br>Communication and Display | n<br>y | ± 0.2% or better                           | ± 0.5% or better                           |  |  |  |
| Active Energy                                           |        | Class 0.2s as per IS14697/ IEC<br>62053-22 | Class 0.5s as per IS14697/ IEC<br>62053-22 |  |  |  |

Class 0.2s as per IS14697

Class 0.2s

(Applicable PF Range = 0.5Lag - 1.0 - 0.8Lead, for Power & Energy Parameters)

#### Safety

Impulse voltage tests: 5 kV, 1.2/50 uS as per IEC60688

Isolation (Withstanding voltage)

**Reactive Energy** 

**Apparent Energy** 

• Between primary terminals\* and secondary terminals\*\* and Earth:

- At least 2500 V AC for 1 minute
- Between primary terminals\*:
- At least 2500 V AC for 1 minute

Between secondary terminals\*\*:

At least 2500 V AC for 1 minute

Between secondary terminals Pulse o/p\*\*\*:

At least 1500 V AC for 1 minute

\* Primary terminals indicate Aux power terminals, Voltage i/p terminals and CT terminals.

\*\* Secondary terminals indicate Analog o/p A1, Analog o/p A2, Analog o/p A3, Analog o/p A4, pulse o/p [D1 & D2] and Communication o/p.

\*\*\* Between secondary terminals Pulse o/p: Pulse o/p D1 & Pulse o/p D2

Insulation resistance: 20MΩ or more at 500 V DC between power terminals and grounding Terminal.

Class 0.5s as per IS14697

Class 0.5s

masibus

| masibus°                               | Model: MFT<br>Doc. Ref. no. : - mMTom201<br>Issue no. 02                           |
|----------------------------------------|------------------------------------------------------------------------------------|
| Environmental                          |                                                                                    |
| Operating temperature                  | 0 <u>1530</u> 4555°C                                                               |
| Storage temperature                    | -10 to 70°C                                                                        |
| Usage Group                            | II as per IEC60688                                                                 |
| Relative humidity                      | 30-95% non-condensing                                                              |
| Warm up time                           | 10 minutes                                                                         |
| Installation Category                  | CATIII (Refer to measuring and auxiliary inputs ≤ 300VAC versus earth              |
| Protection Class                       | I                                                                                  |
| Pollution Degree                       | 2                                                                                  |
| Physical                               | 1700                                                                               |
| Protection Class                       | IP20                                                                               |
| Mounting Type                          | DIN Rail                                                                           |
| Dimension                              | 100 x 78 x 110 mm                                                                  |
| Material                               | ABS                                                                                |
| Weight                                 | 0.5 Kg                                                                             |
| Terminal [I/P and Aux]<br>Cable Size   | Barrier Type Terminal<br><2.5mm <sup>2</sup><br>Cable Size<br><2.5 mm <sup>2</sup> |
| Terminal [O/P and Earth]<br>Cable Size | MKDS<br>2.5mm <sup>2</sup>                                                         |

Configuration and View Software for programming the transducer at Site: Windows based software; it is possible to configure the transducer on site through RS-485(MODBUS) interface or Ethernet interface (MODNET).



### **3. FRONT PANEL PICTURE**

#### **3.1 Front Panel Picture**



Fig-3.1 Detail of front panel - Basic model



Fig-3.2 Detail of front panel - Basic model + LCD and Keypad



Fig-3.3 Detail of front panel - Basic model + Ethernet

63)

Q

63

63

Q

3

63

Ø

63

63



Fig-3.4 Detail of front panel - Basic model + LCD and Keypad + Ethernet



### 4. TERMINAL CONNECTIONS

#### **4.1 Front Panel Terminal Connections**



| Terminal No. | Description                   |                               |  |  |  |  |
|--------------|-------------------------------|-------------------------------|--|--|--|--|
| 2            | L/+ (Line)                    |                               |  |  |  |  |
| 3            | N/-(Neutral)                  | Aux. Power Supply Input       |  |  |  |  |
| 29           | E(Earth)                      |                               |  |  |  |  |
| 7            | IR+ [Current In R-Phase ]     |                               |  |  |  |  |
| 8            | IR- [Current Out R-Phase ]    |                               |  |  |  |  |
| 10           | IY+ [Current In Y-Phase ]     | Three Dhace Current Inputs    |  |  |  |  |
| 11           | IY- [Current Out Y-Phase ]    | Three Phase Current inputs    |  |  |  |  |
| 13           | IB+ [Current In B-Phase ]     |                               |  |  |  |  |
| 14           | IB- [Current Out B-Phase ]    |                               |  |  |  |  |
| 15           | Vr [Voltage R-Phase]          |                               |  |  |  |  |
| 16           | Vy [Voltage Y-Phase]          | Three Dhace Vieltage Inputs   |  |  |  |  |
| 17           | Vb[Voltage B-Phase]           | Three Phase Voltage inputs    |  |  |  |  |
| 18           | N [Neutral for Voltage input] |                               |  |  |  |  |
| 21           | RS-485 [D-]                   | DC 485 Connection             |  |  |  |  |
| 22           | RS-485 [D+]                   | KS-485 Connection             |  |  |  |  |
| 23           | Digital O/P2-                 | Dulco Output D2 Connection    |  |  |  |  |
| 24           | Digital O/P2+                 | Pulse Output D2 Connection    |  |  |  |  |
| 25           | Digital O/P1-                 | Dulce Output D1 Connection    |  |  |  |  |
| 26           | Digital O/P1+                 | Puise Output D1 Connection    |  |  |  |  |
| 30           | Analogue O/P4-                | Analogue Output A4 Connection |  |  |  |  |
| 31           | Analogue O/P4+                | Analogue Output A4 Connection |  |  |  |  |
| 32           | Analogue O/P3-                | Analogue Output A2 Connection |  |  |  |  |
| 33           | Analogue O/P3+                | Analogue Output AS Connection |  |  |  |  |



| 34 | Analogue O/P2- | Applogue Output A2 Connection |
|----|----------------|-------------------------------|
| 35 | Analogue O/P2+ | Analogue Output Az Connection |
| 36 | Analogue O/P1- | Analogue Output A1 Connection |
| 37 | Analogue O/P1+ | Analogue Output A1 Connection |



### 5. MECHANICAL GUIDELINE

### 5.1 Front View



#### 5.2 Side View





### 6. INSTALLATION GUIDELINE

#### 6.1 Safety/Warning Precautions

#### **Safety Precautions**

Dangerous voltages capable of causing death are sometimes present in this instrument. Before installation or beginning of any troubleshooting procedures the power to all equipment must be switched off and isolated. Units suspected of being faulty must be disconnected and removed first and brought to a properly equipped workshop for testing and repair. Component replacement and interval adjustments must be made by a company person only.

WARNING

Warning Precautions

Read the instructions in this manual before performing installation and take note of the following precautions:

- All wiring must confirm to appropriate standards of good practice and local codes and regulations. Wiring must be suitable for voltage, current, and temperature rating of the system.
- Ensure that all incoming AC power and other power sources are turned OFF before performing any work on the instrument. Protect the measurement AC Inputs voltage (V1, V2, V3) with 2A external over current protection device and the power supply source inputs with 5A external over current protection device, located close to the equipment.
- Before connecting the instrument to the power source, check the labels on the instrument to
  ensure that your instrument is equipped with the appropriate power supply voltage, input
  voltages and currents. Failure to do so may result in serious or even fatal injury and/or
  equipment damage.
- Under no circumstances don't connect instrument a power source if it is damaged.
- To prevent potential fire or shock hazard, do not expose the instrument to rain or moisture.
- The secondary of an external current transformer must never be allowed to be open circuit when the primary is energized. An open circuit can cause high voltages, possibly resulting in equipment damage, fire and even serious or fatal injury. Ensure that the current transformer wiring is secured using an external strain relief to reduce mechanical strain on the screw terminals, if necessary.
- Only qualified personnel familiar with the instrument and its associated electrical equipment must perform setup procedures.
- Beware not to over-tighten the terminal screws.
- Read this manual thoroughly before connecting the device to the current carrying circuits. During operation of the device, hazardous voltages are present on input terminals. Failure to observe precautions can result in serious or even fatal injury or damage to equipment.
- Upon receipt of the shipment remove the unit from the carton and inspect the unit for shipping damage. If any damage due to transit, report and claim with the carrier. Write down the model



number and serial number for future reference when corresponding with our Customer Support Division.

 Do not use this instrument in areas such as excessive shock, vibration, dirt, moisture, corrosive gases or rain. The ambient temperature of the areas should not exceed the maximum rating specified.

#### 6.2 Common Wiring with RS-485 Connections

Recommended wiring for Aux Supply, Voltage input, Current Input & Analogue Output along with RS-485 Connections

Also note correct polarity for Current Input & Phase wise Voltage & Current Input combination is essential





c) 4-Wire Direct Connection



#### 6.3.2 Three Phase Three Wire System



a) 3-Wire 2- Element Open Delta Connection Using 2PTs, 2CTs

masibus



**Note:** -For Single Phase Two Wire, system should be 3P4W and Do not consider Average Voltage, Average Current & Average PF on the display or MODBUS.



#### 6.4 PTs and CTs

Large electrical installations have high voltages and currents, which may exceed the direct connection rating of the MFT. In this case, Potential Transformers (PTs) and Current Transformers (CTs) are used to precisely "step down" or reduce the voltage and current level to suit the Transducer rating. Potential Transformers usually have a full-scale output of 110V ac RMS line-line and Current Transformers, a full-scale output of 5A or sometimes 1A.

The PTs (Potential Transformers) and CTs (Current Transformers) must be planned, installed and tested by a qualified electrical contractor before wiring the transducer. The accuracy of the measurement also depends on the accuracy and phase – angle error of the PTs and CTs. Instrument Class 1 or better PTs and CTs are recommended. Do not use protection class CTs to feed the MFT; as they have poor accuracy and phase characteristics.

Ensure that the CT primary rating has been selected so that your normal load variation lies between 40% and 80% of its full scale. If your CT is over-rated, say if the load is always less than 10% of the CT primary rating, accuracy suffers.

#### 6.4.1 PT, CT Wiring

The PTs and CTs must have adequate VA rating to support the burden (loading) on the secondary. You may want to support the auxiliary supply burden from one of the PTs. CTs wiring can impose additional burden (loading) on the CT. For example, if the CT has a 5A secondary and the wire resistance is 1.0  $\Omega$ , then the CT has to support an additional burden of 5VA. The wiring distance from the CT secondary to instrument should be such that, VA of wire path between MFT and CT along with VA of MFT should not exceed the VA rating of CT, otherwise the CT could get overburdened and give large errors.

MFT should be conveniently located for easy connections of voltage (PT) and Current (CT) signals.



### 7. CONFIGURATION GUIDELINES

#### 7.1 Modes of Operation

Power Indicator has four mode of operation:

- Run Mode
- PGM Mode (Edit Mode)
- AUTO/MANUAL SCROLL
- Reset Registers

#### 7.2 Run Mode Detail

At power ON, the unit by default goes into RUN Mode. The following frame (if 3p4w) is displayed in AUTO SCROLL, just after flash of MASIBUS introduction frame.

| R. Vrms: | 63.05 |
|----------|-------|
| Y. Vrms: | 63.06 |

In Manual Scroll it will display stored page, if it is programmed in PGM Mode.

#### **AUTO SCROLL**

To toggle the scroll mode i.e. Auto to manual or manual to Auto, press shift key for 5



In Auto scroll mode, display screen will automatically scroll as per manual scroll menu & scroll time is 8 seconds.

#### MANUAL SCROLL

For horizontal movement of frame to frame, press key and it will be in loop Similarly for Vertical

kev.

movement of frames, use

The sequence of frames, which can be observed in RUN Mode, is shown in below fig. There are two types of display menu: For 3P4W and for 3P3W.

#### 7.2.1 Display Page Matrix for 3 Phase 4 Wire System



3-Phase 4-Wire

#### Note:-

Above screens are only for information of RUN MODE pages, values inside the screens are not actual.

When ordering code is w/o LCD then Chapter – 7 will not be useful.

masibus



3-Phase 3-Wire

#### Note:-

Above screens are only for information of RUN MODE pages, values inside the screens are not actual.

When ordering code is w/o LCD then Chapter - 7 will not be useful.



#### 7.3 Program Mode Detail

The PROGRAM Mode can be entered by pressing the PGM key. Once the key is pressed, the unit prompts for four digit password as shown below.



Factory default password is 0001.If you have configured this password as per your choice then apply that password by setting blinking cursor position using three keys: SHIFT key to shift cursor position, UP & DOWN to change the digit value. After password is set press the PGM key to enter in to programming mode. If applied password is incorrect, it will show incorrect password message as shown in below screen and automatically comes out from program mode to normal mode.

INCORRECT PASSWORD 0002

If the entered password is correct, it will flash as below:



And then the following screen is displayed:



Here arrow is a pointer at default position. By moving the pointer you can select the mode. By using UP or DOWN key, you can set arrow position and hence selection is made upon pressing PGM key. To get back to the previous menu press SHIFT key, as it is now functioning as ESCAPE key. Before starting this, see the flow diagram so you will have whole idea for where you want to go and which parameter you want to update or see. In PROGRAM mode you can enter from anywhere by pressing PGM key and you can escape from anywhere of PROGRAM mode by pressing SHIFT key for one step back at each pressing time.

#### 7.4 Edit Mode Detail

By Pressing PGM key on EDIT MODE, below screen will be shown:



To enter in to any option you have to apply same procedure as applied as at EDIT MODE i.e. set the arrow position and press PGM key. If you are pressing SHIFT key, you will come back one step and position of arrow will be at where you entered.

IP RESET option use only when MFT is with Ethernet.



#### 7.4.1 A.C.INPUTS

For this, screen will be shown like below:



Now here four parameters are available: CT RATIO, PT RATIO, Vrate and Irate. To change any parameter, set arrow and press PGM key, so blinking cursor will be on right most digits. Use SHIFT key to change position of blinking cursor digit by digit and update the digit by UP and DOWN keys. Select the required value and save it by pressing PGM key. Now you will come out from that stage so blinking cursor will be removed. If required, go for other and change the value. Before *if you change Vrate and Irate parameters confirm that input to device is not more than 120% of Vrated or Irated.if it is above 120% of set value device may get damaged or malfunction.* Finally press the SHIFT key to get escape from this screen and come back one step. Here arrow will be at where you entered.

#### 7.4.2 SERIAL COMM.

For this, screen will be shown like below:



Here three parameters are available: BAUD, SLV ID and DATA TYPE. BAUD is for Baud-Rate and SLV ID is for Slave Address of Meter for Modbus-RTU (Master-Slave) communication while DATA TYPE decides the data type in which the MFT sends data on RS-485 line. BAUD has three options like 09600, 19200 and 38400, SLV ID should be between 1 and 247 and DATA TYPE has two option REAL and LONG .To change the value of BAUD, set the arrow and press PGM key, it will show blinking cursor before left most digit of present value of BAUD. Now just press UP or DOWN key to set required value and press PGM key to store this value in to EEPROM. For SLV ID, blinking cursor will be at right most digit of value, set the value as per previous explanation and save it. For DATA TYPE using UP or DOWN key select the required data type and press PGM key to store this value in to EEPROM. Finally press the SHIFT key to get escape from this screen and come back one step. Here arrow will be at where you entered.

#### 7.4.3 METER SETTING

For this, screen will be shown like below:



Here two parameters are available like: PSWRD & SYSTEM setting. PSWRD is for four digit password to security purpose. SYSTEM is used to whether MFT is for 3 phase 4 wire or for 3 phase 3 wire.

## Note: Wiring for 3P4W and 3P3W are different so, change/check the wiring also if you are changing this parameter in installed device.

To change PSWRD value, apply same procedure as applied as in previous and save it. Finally press the SHIFT key to get escape from this screen and come back one step. Here arrow will be at where you entered.

#### 7.4.4 IP RESET

For this, screen will be shown like below:



Page 25 of 48



#### IP RESET is for Default IP to 192.168.100.110

Now for Reset IP, press PGM key, it will show blinking cursor left most value of NO, Now just press UP or DOWN key to set IP Reset NO or YES. If set YES and press PGM key than display WAIT and then after DONE, it show that the Default IP is store to EEPROM. Finally press the RIGHT SHIFT key to get escape from this screen and come back one step. Here arrow will be at where you entered.

### 7.5 AUTO/MANUAL SCROLL

AUTO/MANUAL SCROLL change can be done as mentioned below:



#### AUTO SCROLL

- From flow diagram you can see, the screens are in ROW and COLUMN. It will automatically scroll the page every 8 seconds COLUMN wise and will jump to next adjacent COLUMN for AUTO SCROLL.
- To toggle SCROLL mode i.e. Auto to Manual and Manual to Auto, press SHIFT key for 5 seconds, it will not get programmed, so till MFT gets Power off it will remain in that mode.
- To program MANUAL SCROLL and freeze particular page every time it get Power ON, first let that page come in AUTO SCROLL or go to that particular page using temporary MANUAL SCROLL than press PGM key to enter in to Program mode.
- In second line of display change it from AUTO SCROLL to MANUAL SCROLL by pressing PGM key again.
- If it is showing MANUAL SCROLL than change it to AUTO and then make it MANUAL SCROLL.

#### MANUAL SCROLL

- In MANUAL SCROLL, SHIFT, UP or DOWN Key will work as mentioned in 6.2.
- To toggle SCROLL mode i.e. Auto to Manual and Manual to Auto, press SHIFT key for 5 seconds, it will not get programmed, so till MFT gets Power off it will remain in that mode.
- To enter in to AUTO SCROLL go into the Programming mode and then change the selection from MANUAL SCROLL to AUTO SCROLL.
- In this mode ':' on every RUN MODE page will blink for indicate MANUAL SCROLL.



#### 7.6 RESET REGS

In this mode you can reset energy registers. There are six types of registers like: Active [Im] for Active Import Energy, Active [Ex] for Active Export Energy, Reactive [Im] for Reactive Import Energy, Reactive [Ex] for Reactive Export Energy, Apparent for Apparent Energy and at the end one option is given to reset all these registers at the same time. It is indicated as RST ALL REG.



At a same time only two registers can be shown. For other registers, there is an indication of  $\checkmark$  or  $\blacktriangle$ . So you can set arrow by using UP and DOWN key. In above screen first two registers are shown, having  $\checkmark$  indication .i.e. these shown registers are up the list. Now suppose you are pressing DOWN key up to arrow is for Reactive [Im]. Now press DOWN key only once, screen will be shown like below:



Here it is showing both UP indication for some registers which are at upside and DOWN indication for some registers which are at down side. Now suppose you are pressing DOWN key up to arrow is for Apparent and RESET registers. Now press DOWN key only once, screen will be shown like below:



So you can set arrow as per this and press PGM key to enter 'RST ALL REG.' where screen shows like below:



Here is the confirmation that whether you are sure or not to erase energy data to reset it. If you set arrow before YES and pressed PGM, all registers (phase wise plus total) of this kind, energy will start from zero and you will come back one step where you entered, so you can go for another. If you set arrow before NO and pressed PGM key, you will come back one step where you entered without any reset. By this way you can reset any register.



### 8. MODBUS DETAILS

RS – 485 interface is provided to communicate with the MFT. The interface is available at the terminals. (Refer Wiring Details)

When controllers are setup to communicate on a Modbus network using RTU (Remote Terminal Unit) mode, each 8–bit byte in a message contains two 4–bit Hexadecimal characters. The main advantage of this mode is that, it's greater Character density allows better data throughput than ASCII for the same baud rate.

Use only following function codes for data read/write purpose

| CODE | MEANING                  | ACTION                                                          |
|------|--------------------------|-----------------------------------------------------------------|
| 03   | Read holding registers   | Obtains current binary value in one or more holding registers.  |
| 04   | Read Input registers     | Obtains current binary value in one or more Input registers.    |
| 06   | Preset single register   | Place a specific binary value into a holding register.          |
| 16   | Preset multiple register | Place a specific binary value into a multiple holding register. |

#### 8.1 Modbus Register Map for 3P4W parameters

**Data read Query** = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x No. of data word, High], [0 x No. of data word. Low] [0 x CRC Low] [0 x CRC High]

#### **Function Code** = 0X04

Address - between 30001 to 30097

**No. of data word**  $\leq$  98 & in multiple of 2 as all data are of 4 Bytes [Long & Real]. Enter only Even value (data word length).

**Response** = [0 x Slave Id], [0 x Fun. Code], [Byte count], [Data High], [Data Low] ...... [Data. High], [Data. Low] [0 x CRC Low] [0 x CRC High]

| S. No. | Address | Measured parameter | words | Multiplication Factor<br>(if data type is long) |
|--------|---------|--------------------|-------|-------------------------------------------------|
| 1      | 30001   | Frequency          | 2     | 0.01                                            |
| 2      | 30003   | R. PF              | 2     | 0.001                                           |
| 3      | 30005   | Y. PF              | 2     | 0.001                                           |
| 4      | 30007   | B. PF              | 2     | 0.001                                           |
| 5      | 30009   | System. PF         | 2     | 0.001                                           |
| 6      | 30011   | R. Vrms            | 2     | 0.1                                             |
| 7      | 30013   | Y. Vrms            | 2     | 0.1                                             |
| 8      | 30015   | B. Vrms            | 2     | 0.1                                             |
| 9      | 30017   | A. Vrms            | 2     | 0.1                                             |
| 10     | 30019   | Vrms R_Y           | 2     | 0.1                                             |
| 11     | 30021   | Vrms B_Y           | 2     | 0.1                                             |
| 12     | 30023   | Vrms B_R           | 2     | 0.1                                             |
| 13     | 30025   | R. Irms            | 2     | 0.001                                           |
| 14     | 30027   | Y. Irms            | 2     | 0.001                                           |
| 15     | 30029   | B. Irms            | 2     | 0.001                                           |
| 16     | 30031   | A. Irms            | 2     | 0.001                                           |
| 17     | 30033   | Reserved           | -     | -                                               |
| 18     | 30035   | R. Watt            | 2     | 1                                               |
| 19     | 30037   | Y. Watt            | 2     | 1                                               |

Page 28 of 48



| 20 | 30039 | B. Watt        | 2 | 1   |
|----|-------|----------------|---|-----|
| 21 | 30041 | S. Watt        | 2 | 1   |
| 22 | 30043 | R. Var         | 2 | 1   |
| 23 | 30045 | Y. Var         | 2 | 1   |
| 24 | 30047 | B. Var         | 2 | 1   |
| 25 | 30049 | S. Var         | 2 | 1   |
| 26 | 30051 | R. VA          | 2 | 1   |
| 27 | 30053 | Y. VA          | 2 | 1   |
| 28 | 30055 | B. VA          | 2 | 1   |
| 29 | 30057 | S. VA          | 2 | 1   |
| 30 | 30059 | R. Wh-Import   | 2 | 0.1 |
| 31 | 30061 | Y. Wh-Import   | 2 | 0.1 |
| 32 | 30063 | B. Wh-Import   | 2 | 0.1 |
| 33 | 30065 | T. Wh-Import   | 2 | 0.1 |
| 34 | 30067 | R. Wh-Export   | 2 | 0.1 |
| 35 | 30069 | Y. Wh-Export   | 2 | 0.1 |
| 36 | 30071 | B. Wh-Export   | 2 | 0.1 |
| 37 | 30073 | T. Wh-Export   | 2 | 0.1 |
| 38 | 30075 | R. Varh-Import | 2 | 0.1 |
| 39 | 30077 | Y. Varh-Import | 2 | 0.1 |
| 40 | 30079 | B. Varh-Import | 2 | 0.1 |
| 41 | 30081 | T. Varh-Import | 2 | 0.1 |
| 42 | 30083 | R. Varh-Export | 2 | 0.1 |
| 43 | 30085 | Y. Varh-Export | 2 | 0.1 |
| 44 | 30087 | B. Varh-Export | 2 | 0.1 |
| 45 | 30089 | T. Varh-Export | 2 | 0.1 |
| 46 | 30091 | R. Vah         | 2 | 0.1 |
| 47 | 30093 | Y. Vah         | 2 | 0.1 |
| 48 | 30095 | B. Vah         | 2 | 0.1 |
| 49 | 30097 | T. Vah         | 2 | 0.1 |

#### 8.2 Modbus Register Map for 3P3W Parameters

**Data read Query** = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x No. of data word, High], [0 x No. of data word. Low] [0 x CRC Low] [0 x CRC High]

#### Function Code = 0X04

Address - between 30001 to 30097

No. of data word ≤ 98 & in multiple of 2 as all data are of 4 Bytes [Long & Real].

**Response** = [0 x Slave Id], [0 x Fun. Code], [Byte count], [Data High], [Data Low] ...... [Data. High], [Data. Low] [0 x CRC Low] [0 x CRC High]

| [Data Format: long & Real] |         |                       |       |                                              |
|----------------------------|---------|-----------------------|-------|----------------------------------------------|
| S. No.                     | Address | Measured<br>parameter | words | Multiplication Factor (if data type is long) |
| 1                          | 30001   | Frequency             | 2     | 0.01                                         |
| 2                          | 30003   | R_Y. PF               | 2     | 0.001                                        |
| 3                          | 30005   | Reserved              | -     | -                                            |
| 4                          | 30007   | B_Y. PF               | 2     | 0.001                                        |
| 5                          | 30009   | System. PF            | 2     | 0.001                                        |
| 6                          | 30011   | R_Y.Vrms              | 2     | 0. 1                                         |
| 7                          | 30013   | R_B.Vrms              | 2     | 0. 1                                         |
| 8                          | 30015   | B_Y.Vrms              | 2     | 0. 1                                         |
| 9                          | 30017   | A.Vrms                | 2     | 0. 1                                         |
|                            |         |                       |       |                                              |

| 10 | 30019 | Reserved         | - | -     |
|----|-------|------------------|---|-------|
| 11 | 30021 | Reserved         | - | -     |
| 12 | 30023 | Reserved         | - | -     |
| 13 | 30025 | R. Irms          | 2 | 0.001 |
| 14 | 30027 | Reserved         | - | -     |
| 15 | 30029 | B. Irms          | 2 | 0.001 |
| 16 | 30031 | A. Irms          | 2 | 0.001 |
| 17 | 30033 | Reserved         | - | -     |
| 18 | 30035 | R_Y. Watt        | 2 | 1     |
| 19 | 30037 | Reserved         | - | -     |
| 20 | 30039 | B_Y. Watt        | 2 | 1     |
| 21 | 30041 | S. Watt          | 2 | 1     |
| 22 | 30043 | R_Y. Var         | 2 | 1     |
| 23 | 30045 | Reserved         | - | -     |
| 24 | 30047 | B_Y. Var         | 2 | 1     |
| 25 | 30049 | S. Var           | 2 | 1     |
| 26 | 30051 | R_Y. VA          | 2 | 1     |
| 27 | 30053 | Reserved         | - | -     |
| 28 | 30055 | B_Y. VA          | 2 | 1     |
| 29 | 30057 | S. VA            | 2 | 1     |
| 30 | 30059 | R_Y. Wh-Import   | 2 | 0.1   |
| 31 | 30061 | Reserved         | - | -     |
| 32 | 30063 | B_Y. Wh-Import   | 2 | 0.1   |
| 33 | 30065 | T. Wh-Import     | 2 | 0. 1  |
| 34 | 30067 | R_Y. Wh-Export   | 2 | 0. 1  |
| 35 | 30069 | Reserved         | - | -     |
| 36 | 30071 | B_Y. Wh-Export   | 2 | 0. 1  |
| 37 | 30073 | T. Wh-Export     | 2 | 0. 1  |
| 38 | 30075 | R_Y. Varh-Import | 2 | 0. 1  |
| 39 | 30077 | Reserved         | - | -     |
| 40 | 30079 | B_Y. Varh-Import | 2 | 0. 1  |
| 41 | 30081 | T. Varh-Import   | 2 | 0. 1  |
| 42 | 30083 | R_Y. Varh-Export | 2 | 0. 1  |
| 43 | 30085 | Reserved         | - | -     |
| 44 | 30087 | B_Y. Varh-Export | 2 | 0. 1  |
| 45 | 30089 | T. Varh-Export   | 2 | 0. 1  |
| 46 | 30091 | R_Y. Vah         | 2 | 0. 1  |
| 47 | 30093 | Reserved         | - | -     |
| 48 | 30095 | B_Y. Vah         | 2 | 0. 1  |
| 49 | 30097 | T. Vah           | 2 | 0. 1  |

<u>Note:</u> If data type is **long** in power meter then set **Swapped long** in Modbus master. If data type is **Real** power meter then set **Swapped Float** in Modbus master.

<u>Note:</u> Energy will be in Kilo for Real data type and for Long data type multiply with constant stated to get energy in Kilo unit.

Note: Ignore address which are not mentioned in the memory map as they are useful in 3P4W mode.

Note: Ignore value for Reserved in Modbus Memory Map.

masibus



#### 8.3 Modbus Register Map for configuration parameters

#### **Read Holding Register**

**Data read Query** = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x No. of data word, High], [0 x No. of data word. Low] [0 x CRC Low] [0 x CRC High]

Function Code = 0X03 Address – between 40001 to 40015 No. of data word ≤ 16 & in multiple of 2 as all data are of 4 Bytes [Swapped Float].

Function Code = 0X03Address – between 40101 to 40153 No. of data word  $\leq 53$  & in multiple of 1 as all data are of 2 Bytes [Decimal].

**Response** = [0 x Slave Id], [0 x Fun. Code], [Byte count], [Data High], [Data Low] ...... [Data. High], [Data. Low] [0 x CRC Low] [0 x CRC High]

#### Preset Single Register

**Data write Query** = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x Data High], [0 x Data Low], [0 x CRC Low] [0 x CRC High]

**Function Code** = 0X06 **Address** – Any Single Register between 40101 to 40153 **Data** = Data of 1 word, as all data are of 2 Bytes [Decimal].

**Response** = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x Data High], [0 x Data Low], [0 x CRC Low] [0 x CRC High]

#### Preset Multiple Register

**Data write Query** = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x No.of Reg.High], [0 x No.of Reg.Low], [0 x No.of Byte], [0 x Data High], [0 x Data Low], [0 x CRC Low] [0 x CRC High]

**Function Code** = 0X16

Address – Any Multiple Register between 40001 to 40015 Data = Data of 2 word, as all data are of 4 Bytes [Swapped Float].

Beenenge - 10 x Slove Id] 10 x Euro Codel 10 x ADD Highl 10 x ADD Low

**Response** = [0 x Slave Id], [0 x Fun. Code], [0 x ADD. High], [0 x ADD. Low], [0 x No.of Reg.High], [0 x No.of Reg.Low], [0 x CRC Low] [0 x CRC High]

| S.<br>No. | Address | Measured parameter                    | words | Minimum<br>value | Maximum<br>value |
|-----------|---------|---------------------------------------|-------|------------------|------------------|
| 1         | 40001   | A1 measurand range low (see note 1)   | 2     | (see Table 1)    | (see Table 1)    |
| 2         | 40003   | A1 measurand range High (see note 1)  | 2     | (see Table 1)    | (see Table 1)    |
| 3         | 40005   | A 2 measurand range low (see note 1)  | 2     | (see Table 1)    | (see Table 1)    |
| 4         | 40007   | A 2 measurand range High (see note 1) | 2     | (see Table 1)    | (see Table 1)    |
| 5         | 40009   | A3 measurand range low (see note 1)   | 2     | (see Table 1)    | (see Table 1)    |
| 6         | 40011   | A3 measurand range High (see note 1)  | 2     | (see Table 1)    | (see Table 1)    |
| 7         | 40013   | A4 measurand range low (see note 1)   | 2     | (see Table 1)    | (see Table 1)    |
| 8         | 40015   | A4 measurand range High               | 2     | (see Table 1)    | (see Table 1)    |

|                                                                                              |                                                                                                                                                                               | (see note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                                                 |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 9                                                                                            | 40101                                                                                                                                                                         | Password                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                             | 1                                                                                                      | 9999                                                                                                            |
| 10                                                                                           | 40102                                                                                                                                                                         | Slave address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                             | 1                                                                                                      | 247                                                                                                             |
| 11                                                                                           | 40103                                                                                                                                                                         | Baud rate (9600, 19200, 38400)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                             | 9600                                                                                                   | 38400                                                                                                           |
| 12                                                                                           | 40104                                                                                                                                                                         | Energy type for D1<br>(see Table 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 9                                                                                                               |
| 13                                                                                           | 40105                                                                                                                                                                         | System type (see Table 3) (see note 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 1                                                                                                               |
| 14                                                                                           | 40106                                                                                                                                                                         | PF1 type (read only value)<br>(see Table 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 2                                                                                                               |
| 15                                                                                           | 40107                                                                                                                                                                         | PF2 type (read only value) (For 3P4W only) (see Table 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 2                                                                                                               |
| 16                                                                                           | 40108                                                                                                                                                                         | PF3 type (read only value)<br>(see Table 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 2                                                                                                               |
| 17                                                                                           | 40109                                                                                                                                                                         | System PF type(read only value)<br>(see Table 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 2                                                                                                               |
| 18                                                                                           | 40110                                                                                                                                                                         | CT Ratio – High byte(see note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 152                                                                                                             |
| 19                                                                                           | 40111                                                                                                                                                                         | CT Ratio – low byte(see note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                             | 1000                                                                                                   | 65535                                                                                                           |
| 20                                                                                           | 40112                                                                                                                                                                         | PT Ratio – high byte(see note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 152                                                                                                             |
| 21                                                                                           | 40113                                                                                                                                                                         | PT Ratio – low byte(see note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                             | 1000                                                                                                   | 65535                                                                                                           |
| 22                                                                                           | 40114                                                                                                                                                                         | Rated Voltage(P-N secondary) (64,110,120,240)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                             | 64                                                                                                     | 240                                                                                                             |
|                                                                                              |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                                                 |
| 23                                                                                           | 40115                                                                                                                                                                         | Rated Current secondary(1,5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                             | 1                                                                                                      | 5                                                                                                               |
| 23<br>24                                                                                     | 40115<br>40116                                                                                                                                                                | Rated Current secondary(1,5)<br>Pulse constant for D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>1                                                                                                                                                                                                                                                                                                        | 1<br>1                                                                                                 | 5<br>65000                                                                                                      |
| 23<br>24<br>25                                                                               | 40115<br>40116<br>40121                                                                                                                                                       | Rated Current secondary(1,5)<br>Pulse constant for D1<br>Data type(see Table 6) (see<br>note 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1                                                                                                                                                                                                                                                                                                   | 1<br>1<br>0                                                                                            | 5<br>65000<br>1                                                                                                 |
| 23<br>24<br>25<br>26                                                                         | 40115<br>40116<br>40121<br>40130                                                                                                                                              | Rated Current secondary(1,5)<br>Pulse constant for D1<br>Data type(see Table 6) (see<br>note 3)<br>Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                              | 1<br>1<br>0<br>80                                                                                      | 5<br>65000<br>1<br>85                                                                                           |
| 23<br>24<br>25<br>26<br>27                                                                   | 40115<br>40116<br>40121<br>40130<br>40131                                                                                                                                     | Rated Current secondary(1,5)<br>Pulse constant for D1<br>Data type(see Table 6) (see<br>note 3)<br>Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)<br>Energy type for D2<br>(see Table 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                         | 1<br>1<br>0<br>80<br>0                                                                                 | 5<br>65000<br>1<br>85<br>9                                                                                      |
| 23<br>24<br>25<br>26<br>27<br>28                                                             | 40115<br>40116<br>40121<br>40130<br>40131<br>40132                                                                                                                            | Rated Current secondary(1,5)<br>Pulse constant for D1<br>Data type(see Table 6) (see<br>note 3)<br>Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)<br>Energy type for D2<br>(see Table 2)<br>Pulse constant for D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                    | 1<br>1<br>0<br>80<br>0<br>1                                                                            | 5<br>65000<br>1<br>85<br>9<br>65000                                                                             |
| 23<br>24<br>25<br>26<br>27<br>28<br>29                                                       | 40115         40116         40121         40130         40131         40132         40133                                                                                     | Rated Current secondary(1,5)<br>Pulse constant for D1<br>Data type(see Table 6) (see<br>note 3)<br>Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)<br>Energy type for D2<br>(see Table 2)<br>Pulse constant for D2<br>A1 o/p Parameter selection<br>(see Table 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                               | 1<br>1<br>0<br>80<br>0<br>1<br>0                                                                       | 5<br>65000<br>1<br>85<br>9<br>65000<br>30                                                                       |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30                                                 | 40115<br>40116<br>40121<br>40130<br>40131<br>40132<br>40133<br>40134                                                                                                          | Rated Current secondary(1,5)Pulse constant for D1Data type(see Table 6) (see<br>note 3)Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)Energy type for D2<br>(see Table 2)Pulse constant for D2A1 o/p Parameter selection<br>(see Table 7)A2 o/p Parameter selection<br>(see Table7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                          | 1<br>1<br>0<br>80<br>0<br>1<br>0<br>0                                                                  | 5<br>65000<br>1<br>85<br>9<br>65000<br>30<br>30                                                                 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31                                           | 40115         40116         40121         40130         40131         40132         40133         40134         40135                                                         | Rated Current secondary(1,5)Pulse constant for D1Data type(see Table 6) (see<br>note 3)Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)Energy type for D2<br>(see Table 2)Pulse constant for D2A1 o/p Parameter selection<br>(see Table 7)A2 o/p Parameter selection<br>(see Table7)A3 o/p Parameter selection<br>(see Table 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                     | 1<br>1<br>0<br>80<br>0<br>1<br>0<br>0<br>0<br>0                                                        | 5<br>65000<br>1<br>85<br>9<br>65000<br>30<br>30<br>30<br>30                                                     |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32                                     | 40115<br>40116<br>40121<br>40130<br>40131<br>40132<br>40133<br>40134<br>40135<br>40136                                                                                        | Rated Current secondary(1,5)Pulse constant for D1Data type(see Table 6) (see<br>note 3)Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)Energy type for D2<br>(see Table 2)Pulse constant for D2A1 o/p Parameter selection<br>(see Table 7)A2 o/p Parameter selection<br>(see Table 7)A3 o/p Parameter selection<br>(see Table 7)A4 o/p Parameter selection<br>(see Table 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                     | 1<br>1<br>0<br>80<br>0<br>1<br>0<br>0<br>0<br>0<br>0                                                   | 5<br>65000<br>1<br>85<br>9<br>65000<br>30<br>30<br>30<br>30<br>30                                               |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33                               | 40115         40116         40121         40130         40131         40132         40133         40134         40135         40136         40137                             | Rated Current secondary(1,5)Pulse constant for D1Data type(see Table 6) (see<br>note 3)Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)Energy type for D2<br>(see Table 2)Pulse constant for D2A1 o/p Parameter selection<br>(see Table 7)A2 o/p Parameter selection<br>(see Table 7)A3 o/p Parameter selection<br>(see Table 7)A4 o/p Parameter selection<br>(see Table 7)A4 o/p Parameter selection<br>(see Table 7)A1 Output Type<br>(see Table 8) (see note 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                           | 1<br>1<br>0<br>80<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | 5<br>65000<br>1<br>85<br>9<br>65000<br>30<br>30<br>30<br>30<br>30<br>30<br>2                                    |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>33<br>34                   | 40115<br>40116<br>40121<br>40130<br>40131<br>40132<br>40133<br>40134<br>40135<br>40135<br>40136<br>40137<br>40138                                                             | Rated Current secondary(1,5)Pulse constant for D1Data type(see Table 6) (see<br>note 3)Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)Energy type for D2<br>(see Table 2)Pulse constant for D2A1 o/p Parameter selection<br>(see Table 7)A2 o/p Parameter selection<br>(see Table 7)A3 o/p Parameter selection<br>(see Table 7)A4 o/p Parameter selection<br>(see Table 7)A4 o/p Parameter selection<br>(see Table 7)A1 Output Type<br>(see Table 8) (see note 6)A2 Output Type<br>(see Table 8) (see note 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                             | 1<br>1<br>0<br>80<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 5<br>65000<br>1<br>85<br>9<br>65000<br>30<br>30<br>30<br>30<br>30<br>2<br>2<br>2                                |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35                   | 40115         40116         40121         40130         40131         40132         40133         40134         40135         40136         40137         40138         40139 | Rated Current secondary(1,5)Pulse constant for D1Data type(see Table 6) (see<br>note 3)Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)Energy type for D2<br>(see Table 2)Pulse constant for D2A1 o/p Parameter selection<br>(see Table 7)A2 o/p Parameter selection<br>(see Table 7)A3 o/p Parameter selection<br>(see Table 7)A4 o/p Parameter selection<br>(see Table 7)A1 Output Type<br>(see Table 8) (see note 6)A2 Output Type<br>(see Table 8) (see note 6)A3 Output Type<br>(see Table 8) (see note 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                         | 1<br>1<br>0<br>80<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 5<br>65000<br>1<br>85<br>9<br>65000<br>30<br>30<br>30<br>30<br>30<br>30<br>2<br>2<br>2<br>2                     |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>33<br>34<br>35<br>36       | 40115<br>40116<br>40121<br>40130<br>40131<br>40132<br>40133<br>40133<br>40134<br>40135<br>40136<br>40137<br>40138<br>40139<br>40140                                           | Rated Current secondary(1,5)Pulse constant for D1Data type(see Table 6) (see<br>note 3)Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)Energy type for D2<br>(see Table 2)Pulse constant for D2A1 o/p Parameter selection<br>(see Table 7)A2 o/p Parameter selection<br>(see Table 7)A3 o/p Parameter selection<br>(see Table 7)A4 o/p Parameter selection<br>(see Table 7)A1 Output Type<br>(see Table 8) (see note 6)A2 Output Type<br>(see Table 8) (see note 6)A3 Output Type<br>(see Table 8) (see note 6)A4 Output Type<br>(see Table 8) (see note 6)A4 Output Type<br>(see Table 8) (see note 6)A3 Output Type<br>(see Table 8) (see note 6)                                                                                                                                                                                                                                                                                                                                                                                 | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                         | 1<br>1<br>0<br>80<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5<br>65000<br>1<br>85<br>9<br>65000<br>30<br>30<br>30<br>30<br>30<br>2<br>2<br>2<br>2<br>2<br>2<br>2            |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>33<br>34<br>35<br>36<br>37 | 40115<br>40116<br>40121<br>40130<br>40131<br>40132<br>40133<br>40133<br>40134<br>40135<br>40136<br>40137<br>40138<br>40139<br>40140<br>40141                                  | Rated Current secondary(1,5)Pulse constant for D1Data type(see Table 6) (see<br>note 3)Reset All/Individual Energy<br>Reg.(Write only)(see Table 5)Energy type for D2<br>(see Table 2)Pulse constant for D2A1 o/p Parameter selection<br>(see Table 7)A2 o/p Parameter selection<br>(see Table 7)A3 o/p Parameter selection<br>(see Table 7)A4 o/p Parameter selection<br>(see Table 7)A1 Output Type<br>(see Table 8) (see note 6)A2 Output Type<br>(see Table 8) (see note 6)A3 Output Type<br>(see Table 8) (see note 6)A4 Output Type<br>(see Table 8) (see note 6)A5 Output Type<br>(see Table 8) (see note 6)A6 Output Type<br>(see Table 8) (see note 6)A7 Output Type<br>(see Table 8) (see note 6)A4 Output Type<br>(see Table 8) (see note 6)Firmware version | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | 1<br>1<br>0<br>80<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5<br>65000<br>1<br>85<br>9<br>65000<br>30<br>30<br>30<br>30<br>30<br>30<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>- |

Page 32 of 48





| 39 | 40143 | A1 PF Type High(see Table 9)  | 1 | 1 | 2 |
|----|-------|-------------------------------|---|---|---|
| 40 | 40144 | A2 PF Type Low(see Table 9)   | 1 | 1 | 2 |
| 41 | 40145 | A2 PF Type High(see Table 9)  | 1 | 1 | 2 |
| 42 | 40146 | A3 PF Type Low(see Table 9)   | 1 | 1 | 2 |
| 43 | 40147 | A3 PF Type High(see Table 9)  | 1 | 1 | 2 |
| 44 | 40148 | A4 PF Type Low(see Table 9)   | 1 | 1 | 2 |
| 45 | 40149 | A4 PF Type High(see Table 9)  | 1 | 1 | 2 |
| 46 | 40150 | A1 PF direction(see Table 10) | 1 | 0 | 1 |
| 47 | 40151 | A1 PF direction(see Table 10) | 1 | 0 | 1 |
| 48 | 40152 | A1 PF direction(see Table 10) | 1 | 0 | 1 |
| 49 | 40153 | A1 PF direction(see Table 10) | 1 | 0 | 1 |
| 50 | 40154 | IP Reset (see Table 11)       | 1 | 0 | 1 |

**Note 1:** For writing to this Register Address use Function code 16 and select data type Swapped float. Also take care measurand range low should not equal or greater than measurand range High.

**Note 2:** Maximum CT & PT Ratio value is 99999999 i.e. maximum values is 9999.999 & minimum value is 1000 i.e. 1.000

For entering CT and Pt ratio refer the below example.

#### Example:

For entering CTR value 1234.567, convert 1234567 in to hexadecimal i.e. 2D687. Now enter lower four byte (D687) at 40111 and higher four byte (0012) at 40110 addresses respectively.

#### Note 3: If data type is long in MFT then set Swapped long in Modbus master.

If data type is **float** MFT then set **Swapped Float** in Modbus master.

**Note 4:** ignore address which is not mentioned in the memory map as they are useful in 3P4W mode, do proper wiring as stated in Wiring detail section. Also Check the AO Parameters as mapping and Availability of particular Parameter is different for 3p4w and 3p3w; see Table 7 for more detail.

**Note 5:** Energy will be in Kilo for float value and for Long data type multiply with constant stated to get energy in Kilo unit.

**Note 6:** For changing the O/P type one also need to change the J2,J3,J5,J6,J7,J8 jumper on AO card and J8,J9 on Ethernet Card. put female jumper between pin 1&2 for current(4-20mA) o/p and 2&3 for Voltage o/p(0-10V).

| Parameter mapped to AO Channel | Min. Value        | Max. Value       |
|--------------------------------|-------------------|------------------|
| Frequency(Hz)                  | 0.0               | 65.0             |
| PF                             | -1.0              | 1.0              |
| Phase Voltage(V)               | 0.0               | 10,00,000.0      |
| Line Voltage(V)                | 0.0               | 10,00,000.0      |
| Current(A)                     | 0.0               | 10,000.0         |
| Active Power(W)                | -2,00,00,00,000.0 | 2,00,00,00,000.0 |
| Reactive Power(Var)            | -2,00,00,00,000.0 | 2,00,00,00,000.0 |
| Apparent Power(VA)             | 0.0               | 2,00,00,00,000.0 |

#### Table 1:

#### Table 2:

| Value | Energy type for Pulse Output |
|-------|------------------------------|
| 0     | KWh Import                   |
| 1     | KWh Export                   |
| 2     | KVarh - Import               |
| 3     | KVarh - Export               |
| 4     | KVAh                         |
| 5     | MWh Import                   |
| 6     | MWh Export                   |
| 7     | MVarh - Import               |
| 8     | MVarh - Export               |
| 9     | MVAh                         |

#### Table 3:

| Value | System Type |
|-------|-------------|
| 0     | 3P4W        |
| 1     | 3P3W        |

#### Table 4:

| Value(read only) | PF Type |
|------------------|---------|
| 0                | Unity   |
| 1                | Lag     |
| 2                | Lead    |

#### Table 5:

| Value(write only) | Reset Energy Register |
|-------------------|-----------------------|
| 80                | Active Import         |
| 81                | Active Export         |
| 82                | Reactive Import       |
| 83                | Reactive Export       |
| 84                | Apparent              |
| 85                | All Energy            |

#### Table 6:

| Value | Data Type     |
|-------|---------------|
| 0     | Swapped Long  |
| 1     | Swapped Float |

#### Table 7:

| Value | AO Parameter mapping |                     |  |  |  |  |  |
|-------|----------------------|---------------------|--|--|--|--|--|
|       | 3P4W                 | 3P3W                |  |  |  |  |  |
| 0     | R-Phase Frequency    | R_Y Phase Frequency |  |  |  |  |  |
| 1     | Y-Phase Frequency    | -                   |  |  |  |  |  |
| 2     | B-Phase Frequency    | B_Y Phase Frequency |  |  |  |  |  |
| 3     | System Frequency     | System frequency    |  |  |  |  |  |
| 4     | R Phase PF           | -                   |  |  |  |  |  |
| 5     | Y Phase PF           | -                   |  |  |  |  |  |
| 6     | B Phase PF           | -                   |  |  |  |  |  |

masibus



| 7  | System PF              | System PF                |
|----|------------------------|--------------------------|
| 8  | R Phase Voltage        | R_Y Phase Voltage        |
| 9  | Y Phase Voltage        | B_R Phase Voltage        |
| 10 | B Phase Voltage        | B_Y Phase Voltage        |
| 11 | Average Voltage        | Average Voltage          |
| 12 | R_Y Phase Voltage      | -                        |
| 13 | B_R Phase Voltage      | -                        |
| 14 | B_Y Phase Voltage      | -                        |
| 15 | R Phase Current        | R Phase Current          |
| 16 | Y Phase Current        | -                        |
| 17 | B Phase Current        | B Phase Current          |
| 18 | Average Current        | Average Current          |
| 19 | R Phase Active Power   | R_Y Phase Active Power   |
| 20 | Y Phase Active Power   | -                        |
| 21 | B Phase Active Power   | B_Y Phase Active Power   |
| 22 | Total Active Power     | Total Active Power       |
| 23 | R Phase Reactive Power | R_Y Phase Reactive Power |
| 24 | Y Phase Reactive Power | -                        |
| 25 | B Phase Reactive Power | B_Y Phase Reactive Power |
| 26 | Total Reactive Power   | Total Reactive Power     |
| 27 | R Phase Apparent Power | R_Y Phase Apparent Power |
| 28 | Y Phase Apparent Power | -                        |
| 29 | B Phase Apparent Power | B_Y Phase Apparent Power |
| 30 | Total Apparent Power   | Total Apparent Power     |

#### Table 8:

| Value | Output Type                                           |
|-------|-------------------------------------------------------|
| 0     | Current 4-20mA                                        |
| 1     | Voltage 0-10V                                         |
| 2     | Disable(~0mA for current o/p & -0.7V for Voltage o/p) |

#### Table 9:

| Value | System Type |
|-------|-------------|
| 1     | Lag         |
| 2     | Lead        |

#### Table 10:

| Value | System Type   |
|-------|---------------|
| 0     | Anticlockwise |
| 1     | Clockwise     |

#### Table 11:

| Value | Status                                |
|-------|---------------------------------------|
| 0     | (Write 0) No change                   |
| 1     | (Write 1) IP Reset to 192.168.100.110 |
| 2     | Wait for IP Reset                     |
| 3     | IP Reset Done                         |



#### **8.4 Exception Responses**

Exception response is a notification of an error. The exception response codes are listed in the table below. When a slave detects one of these errors, it sends a response to the master consisting of slave address, function code, error code and error check field.

To indicate that the response is a notification of an error, the high order bit of the function code is set to 1.

| CODE | NAME                 | MEANING                                                                                                                  |  |  |  |  |  |  |
|------|----------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 01   | Illegal Function     | The message function received is not an allowable action for slave.                                                      |  |  |  |  |  |  |
| 02   | Illegal Data Address | The address referenced in the data field is not<br>an allowable address for the addressed slave<br>location.             |  |  |  |  |  |  |
| 03   | Illegal Data Value   | The value referenced in the data field is not allowable in the addressed slave location.                                 |  |  |  |  |  |  |
| 06   | Slave Device Busy    | The slave is engaged in processing a program command. The master should retransmit the message later when slave is free. |  |  |  |  |  |  |

#### Example

#### **Query Message**

| SLAVE<br>ADDR | FUNCTION<br>CODE | H.O<br>START<br>ADDR | L.O<br>START<br>ADDR | H.O NO<br>OF REG | L.O NO<br>OF REG | ERROR<br>CHECK<br>FIELD | ERROR<br>CHECK<br>FIELD |
|---------------|------------------|----------------------|----------------------|------------------|------------------|-------------------------|-------------------------|
| 0x0A          | 0x01             | 0x00                 | 0x24                 | 0x00             | 0x02             | 0xFC                    | 0xBB                    |

The query requests the status of input 0036 in slave no. 10. Since the function is an invalid function for 2160-A, so the following error response will be generated.

#### Response Message

| SLAVE | FUNCTION | EXCEPTION | ERROR | ERROR |
|-------|----------|-----------|-------|-------|
| ADDR  | CODE     | CODE      | CHECK | CHECK |
| 0x0A  | 0x81     | 0x01      | 0xF0  |       |

The function field is the original function code with the high order bit set and exception code 01 indicates an illegal function field.

When slave device that is power meter is in the PROGRAM mode, a busy state is transmitted indicating that slave device is busy and the master should retransmit the message later when the slave is free. So here exception code 0x06 is transmitted. Response message is shown below.

#### Response Message

| SLAVE     | FUNCTION            | EXCEPTION | ERROR | ERROR |
|-----------|---------------------|-----------|-------|-------|
| ADDR      | CODE                | CODE      | CHECK | CHECK |
| Device ID | Fun. Code<br>+ 0x80 | 0x06      | 0xC3  | 0x02  |

#### 8.4.1 Read Holding Register (Function Code 03)

To get value of configuration parameters (CT Ratio, PT Ratio, PIs/KWh, Baud, Slave address etc.) and Analogue Measurement range parameters, you have to use function code **03**. Here the addressing allows to **8** registers (2- words) and **41** registers (Words) to be obtained at each request.

#### 8.4.2 Preset Single Register (Function Code 06)

Function (06) will overwrite controller memory.

Function (06) allows the user to modify the contents of a holding register for configuration parameter. The values are provided in binary, up to the maximum capacity of the controller and unused higher bits must be set to zero.



#### Example

This example will set the CT Ratio value in slave number 17. Here CT Ratio and PT ratio requires 2 integer register for each. So you should write higher integer and lower integer value to get whole Ratio value. Suppose you want to write CT RATIO = 5,then you have to take 5000 to write because in unit side this 5000 will be divided by 1000 i.e. you will get 5.Now Hex value of 5000 is 0x1388,so you will take 0x00 for higher integer register and 0x1388 for lower integer register. The address of CT Higher integer is 0x6D and value to be programmed is 0x0000.

Similarly you can do for lower integer and also for PT RATIO. The normal response to a preset single register request is to transmit the query message after the register has been altered,

If the value is an illegal value then the response message will be an exception response (Error Message). For the details of maximum and minimum values of any parameter refer to manual.

#### 8.4.3 Preset multiple Register (Function Code 16)

Function (16) will overwrite controller memory.

Function (16) allows the user to modify the contents of a multiple holding register for configuration parameter. The values are provided in binary, up to the maximum capacity of the controller and unused higher bits must be set to zero.

#### Example

This example will set the Analog channel measurand Low value in slave number 17. Select Data type Swapped float in PC based modbus software. Write Value 100.0 in this register

#### Query Message

| SLAVE<br>ADDR | FUNC<br>CODE | H.O<br>START<br>ADDR | L.O<br>START<br>ADDR | NO.<br>OF<br>REG.<br>HIGH | NO.<br>OF<br>REG.<br>LOW | NO.<br>OF<br>BYT<br>E | DAT<br>A<br>VAL<br>UE<br>H.O. | DATA<br>VALUE<br>L.O. | ERRO<br>R<br>CHEC<br>K<br>FIELD | ERRO<br>R<br>CHEC<br>K<br>FIELD |
|---------------|--------------|----------------------|----------------------|---------------------------|--------------------------|-----------------------|-------------------------------|-----------------------|---------------------------------|---------------------------------|
| 0x11          | 0x10         | 0x00                 | 0x00                 | 0x00                      | 0x02                     | 0x04                  | 0x42<br>C8                    | 0x0000                | 0x66                            | 0x29                            |

Similarly you can write more than one float register at a time with this Function code.

#### **Response Message**

| SLAVE<br>ADDR | FUNC<br>CODE | H.O<br>START<br>ADDR | L.O<br>START<br>ADDR | NO.OF<br>REG.<br>HIGH | NO.OF<br>REG.<br>LOW | ERROR<br>CHECK<br>FIELD | ERROR<br>CHECK<br>FIELD |
|---------------|--------------|----------------------|----------------------|-----------------------|----------------------|-------------------------|-------------------------|
| 0x11          | 0x10         | 0x00                 | 0x00                 | 0x00                  | 0x02                 | 0x89                    | 0x84                    |

If the value is an illegal value then the response message will be an exception response (Error Message). For the details of maximum and minimum values of any parameter refer to manual.



### 9. ETHERNET DETAILS

Ethernet interface is provided to remotely communicate with the MFT. The RJ-45 Connector provided on the front side of MFT.

#### 9.1 Interface Standard

The configuration details to communicate with the transducer are given below

- Interface : RJ45
- Speed : 10/100 Mbps
- Protocol : Modnet

Data type : Swapped Float/ Swapped Long/Decimal

#### 9.2 Protocol

The Ethernet interfaces use MODNET Protocol in RTU Mode. Communicating with MFT involves sending commands to the transducer for reading and writing the particular register. The IP address can be changed through MASIBUS configuration software or web.

#### 9.3 Modnet Register Map for 3P4W parameters

| S. No. | Address | Measured parameter | words | Multiplication Factor  |
|--------|---------|--------------------|-------|------------------------|
|        |         |                    |       | (if data type is long) |
| 1      | 40001   | Frequency          | 2     | 0.01                   |
| 2      | 40003   | R. PF              | 2     | 0.001                  |
| 3      | 40005   | Y. PF              | 2     | 0.001                  |
| 4      | 40007   | B. PF              | 2     | 0.001                  |
| 5      | 40009   | System. PF         | 2     | 0.001                  |
| 6      | 40011   | R. Vrms            | 2     | 0.1                    |
| 7      | 40013   | Y. Vrms            | 2     | 0.1                    |
| 8      | 40015   | B. Vrms            | 2     | 0.1                    |
| 9      | 40017   | A. Vrms            | 2     | 0.1                    |
| 10     | 40019   | Vrms R_Y           | 2     | 0.1                    |
| 11     | 40021   | Vrms B_Y           | 2     | 0.1                    |
| 12     | 40023   | Vrms B_R           | 2     | 0.1                    |
| 13     | 40025   | R. Irms            | 2     | 0.001                  |
| 14     | 40027   | Y. Irms            | 2     | 0.001                  |
| 15     | 40029   | B. Irms            | 2     | 0.001                  |
| 16     | 40031   | A. Irms            | 2     | 0.001                  |
| 17     | 40033   | Reserved           | -     | -                      |
| 18     | 40035   | R. Watt            | 2     | 1                      |
| 19     | 40037   | Y. Watt            | 2     | 1                      |
| 20     | 40039   | B. Watt            | 2     | 1                      |
| 21     | 40041   | S. Watt            | 2     | 1                      |
| 22     | 40043   | R. Var             | 2     | 1                      |
| 23     | 40045   | Y. Var             | 2     | 1                      |
| 24     | 40047   | B. Var             | 2     | 1                      |
| 25     | 40049   | S. Var             | 2     | 1                      |
| 26     | 40051   | R. VA              | 2     | 1                      |
| 27     | 40053   | Y. VA              | 2     | 1                      |
| 28     | 40055   | B. VA              | 2     | 1                      |
| 29     | 40057   | S. VA              | 2     | 1                      |
| 30     | 40059   | R. Wh-Import       | 2     | 0.1                    |
| 31     | 40061   | Y. Wh-Import       | 2     | 0.1                    |



| 32 | 40063 | B. Wh-Import   | 2 | 0.1 |
|----|-------|----------------|---|-----|
| 33 | 40065 | T. Wh-Import   | 2 | 0.1 |
| 34 | 40067 | R. Wh-Export   | 2 | 0.1 |
| 35 | 40069 | Y. Wh-Export   | 2 | 0.1 |
| 36 | 40071 | B. Wh-Export   | 2 | 0.1 |
| 37 | 40073 | T. Wh-Export   | 2 | 0.1 |
| 38 | 40075 | R. Varh-Import | 2 | 0.1 |
| 39 | 40077 | Y. Varh-Import | 2 | 0.1 |
| 40 | 40079 | B. Varh-Import | 2 | 0.1 |
| 41 | 40081 | T. Varh-Import | 2 | 0.1 |
| 42 | 40083 | R. Varh-Export | 2 | 0.1 |
| 43 | 40085 | Y. Varh-Export | 2 | 0.1 |
| 44 | 40087 | B. Varh-Export | 2 | 0.1 |
| 45 | 40089 | T. Varh-Export | 2 | 0.1 |
| 46 | 40091 | R. Vah         | 2 | 0.1 |
| 47 | 40093 | Y. Vah         | 2 | 0.1 |
| 48 | 40095 | B. Vah         | 2 | 0.1 |
| 49 | 40097 | T. Vah         | 2 | 0.1 |

**Note:** Use function code: 03-Read Holding Register, Data Type: Swapped Float

### 9.4 Modnet Register Map for 3P3W Parameters

| [Data Format: long & Real] |         |            |       |                        |
|----------------------------|---------|------------|-------|------------------------|
| S. No.                     | Address | Measured   | words | Multiplication Factor  |
|                            |         | parameter  |       | (if data type is long) |
| 1                          | 40001   | Frequency  | 2     | 0.01                   |
| 2                          | 40003   | R_Y. PF    | 2     | 0.001                  |
| 3                          | 40005   | Reserved   | -     | -                      |
| 4                          | 40007   | B_Y. PF    | 2     | 0.001                  |
| 5                          | 40009   | System. PF | 2     | 0.001                  |
| 6                          | 40011   | R_Y.Vrms   | 2     | 0. 1                   |
| 7                          | 40013   | R_B.Vrms   | 2     | 0. 1                   |
| 8                          | 40015   | B_Y.Vrms   | 2     | 0. 1                   |
| 9                          | 40017   | A.Vrms     | 2     | 0. 1                   |
| 10                         | 40019   | Reserved   | -     | -                      |
| 11                         | 40021   | Reserved   | -     | -                      |
| 12                         | 40023   | Reserved   | -     | -                      |
| 13                         | 40025   | R. Irms    | 2     | 0.001                  |
| 14                         | 40027   | Reserved   | -     | -                      |
| 15                         | 40029   | B. Irms    | 2     | 0.001                  |
| 16                         | 40031   | A. Irms    | 2     | 0.001                  |
| 17                         | 40033   | Reserved   | -     | -                      |
| 18                         | 40035   | R_Y. Watt  | 2     | 1                      |
| 19                         | 40037   | Reserved   | -     | -                      |
| 20                         | 40039   | B_Y. Watt  | 2     | 1                      |
| 21                         | 40041   | S. Watt    | 2     | 1                      |
| 22                         | 40043   | R_Y. Var   | 2     | 1                      |
| 23                         | 40045   | Reserved   | -     | -                      |
| 24                         | 40047   | B_Y. Var   | 2     | 1                      |
| 25                         | 40049   | S. Var     | 2     | 1                      |
| 26                         | 40051   | R_Y. VA    | 2     | 1                      |
| 27                         | 40053   | Reserved   | -     | -                      |
| 28                         | 40055   | B_Y. VA    | 2     | 1                      |
| 29                         | 40057   | S. VA      | 2     | 1                      |



| 30 | 40059 | R_Y. Wh-Import   | 2 | 0.1  |
|----|-------|------------------|---|------|
| 31 | 40061 | Reserved         | - | -    |
| 32 | 40063 | B_Y. Wh-Import   | 2 | 0.1  |
| 33 | 40065 | T. Wh-Import     | 2 | 0. 1 |
| 34 | 40067 | R_Y. Wh-Export   | 2 | 0. 1 |
| 35 | 40069 | Reserved         | - | -    |
| 36 | 40071 | B_Y. Wh-Export   | 2 | 0. 1 |
| 37 | 40073 | T. Wh-Export     | 2 | 0. 1 |
| 38 | 40075 | R_Y. Varh-Import | 2 | 0. 1 |
| 39 | 40077 | Reserved         | - | -    |
| 40 | 40079 | B_Y. Varh-Import | 2 | 0. 1 |
| 41 | 40081 | T. Varh-Import   | 2 | 0. 1 |
| 42 | 40083 | R_Y. Varh-Export | 2 | 0. 1 |
| 43 | 40085 | Reserved         | - | -    |
| 44 | 40087 | B_Y. Varh-Export | 2 | 0. 1 |
| 45 | 40089 | T. Varh-Export   | 2 | 0. 1 |
| 46 | 40091 | R_Y. Vah         | 2 | 0. 1 |
| 47 | 40093 | Reserved         | - | -    |
| 48 | 40095 | B_Y. Vah         | 2 | 0. 1 |
| 49 | 40097 | T. Vah           | 2 | 0. 1 |

Note: Use function code: 03-Read Holding Register, Data Type: Swapped Float

### 9.5 Modnet Register Map for configuration parameters

| S.<br>No. | Address<br>(READ) | Address<br>(WRITE) | Measured parameter                                          | word | Minimum<br>value | Maximum<br>value |
|-----------|-------------------|--------------------|-------------------------------------------------------------|------|------------------|------------------|
| 1         | 40099             | 41026              | A1 measurand range low (see note 1)                         | 2    | (see Table 1)    | (see Table 1)    |
| 2         | 40101             | 41028              | A1 measurand range High (see note 1)                        | 2    | (see Table 1)    | (see Table 1)    |
| 3         | 40103             | 41030              | A 2 measurand range low (see note 1)                        | 2    | (see Table 1)    | (see Table 1)    |
| 4         | 40105             | 41032              | A 2 measurand range High (see note 1)                       | 2    | (see Table 1)    | (see Table 1)    |
| 5         | 40107             | 41034              | A3 measurand range low (see note 1)                         | 2    | (see Table 1)    | (see Table 1)    |
| 6         | 40109             | 41036              | A3 measurand range High (see note 1)                        | 2    | (see Table 1)    | (see Table 1)    |
| 7         | 40111             | 41038              | A4 measurand range low (see note 1)                         | 2    | (see Table 1)    | (see Table 1)    |
| 8         | 40113             | 41040              | A4 measurand range High (see note 1)                        | 2    | (see Table 1)    | (see Table 1)    |
| 9         | 40115             | 41042              | Password                                                    | 1    | 1                | 9999             |
| 10        | 40116             | 41043              | Slave address                                               | 1    | 1                | 247              |
| 11        | 40117             | 41044              | Baud rate (9600, 19200, 38400)                              | 1    | 9600             | 38400            |
| 12        | 40118             | 41045              | Energy type for D1<br>(see Table 2)                         | 1    | 0                | 9                |
| 13        | 40119             | 41046              | System type (see Table 3)<br>(see note 4)                   | 1    | 0                | 1                |
| 14        | 40120             | -                  | PF1 type (read only value)<br>(see Table 4)                 | 1    | 0                | 2                |
| 15        | 40121             | -                  | PF2 type (read only value)<br>(For 3P4W only) (see Table 4) | 1    | 0                | 2                |

masibus



| 16 | 40122 | -     | PF3 type (read only value)<br>(see Table 4)                  | 1 | 0    | 2     |
|----|-------|-------|--------------------------------------------------------------|---|------|-------|
| 17 | 40123 | -     | System PF type(read only value) (see Table 4)                | 1 | 0    | 2     |
| 18 | 40124 | 41047 | CT Ratio – High byte<br>(see note 2)                         | 1 | 0    | 152   |
| 19 | 40125 | 41048 | CT Ratio – low byte<br>(see note 2)                          | 1 | 1000 | 65535 |
| 20 | 40126 | 41049 | PT Ratio – high byte<br>(see note 2)                         | 1 | 0    | 152   |
| 21 | 40127 | 41050 | PT Ratio – low byte<br>(see note 2)                          | 1 | 1000 | 65535 |
| 22 | 40128 | 41051 | Rated Voltage(P-N<br>Secondary) (64,110,120,240)             | 1 | 64   | 240   |
| 23 | 40129 | 41052 | Rated Current secondary(1,5)                                 | 1 | 1    | 5     |
| 24 | 40130 | 41053 | Pulse constant for D1                                        | 1 | 1    | 65000 |
| 25 | 40135 | 41054 | Data type(see Table 6)<br>(see note 3)                       | 1 | 0    | 1     |
| 26 | -     | 41055 | Reset All/Individual Energy<br>Reg.(Write only)(see Table 5) | 1 | 80   | 85    |
| 27 | 40145 | 41056 | Energy type for D2<br>(see Table 2)                          | 1 | 0    | 9     |
| 28 | 40146 | 41057 | Pulse constant for D2                                        | 1 | 1    | 65000 |
| 29 | 40147 | 41058 | A1 o/p Parameter selection (see Table 7)                     | 1 | 0    | 30    |
| 30 | 40148 | 41059 | A2 o/p Parameter selection<br>(see Table7)                   | 1 | 0    | 30    |
| 31 | 40149 | 41060 | A3 o/p Parameter selection (see Table 7)                     | 1 | 0    | 30    |
| 32 | 40150 | 41061 | A4 o/p Parameter selection<br>(see Table 7)                  | 1 | 0    | 30    |
| 33 | 40151 | 41062 | A1 Output Type<br>(see Table 8) (see note 6)                 | 1 | 0    | 2     |
| 34 | 40152 | 41063 | A2 Output Type<br>(see Table 8) (see note 6)                 | 1 | 0    | 2     |
| 35 | 40153 | 41064 | A3 Output Type<br>(see Table 8) (see note 6)                 | 1 | 0    | 2     |
| 36 | 40154 | 41065 | A4 Output Type<br>(see Table 8) (see note 6)                 | 1 | 0    | 2     |
| 37 | 40155 | -     | Firmware version                                             | 1 | -    | -     |
| 38 | 40156 | 41066 | A1 PF Type Low(see Table 9)                                  | 1 | 1    | 2     |
| 39 | 40157 | 41067 | A1 PF Type High(see Table 9)                                 | 1 | 1    | 2     |
| 40 | 40158 | 41068 | A2 PF Type Low(see Table 9)                                  | 1 | 1    | 2     |
| 41 | 40159 | 41069 | A2 PF Type High(see Table 9)                                 | 1 | 1    | 2     |
| 42 | 40160 | 41070 | A3 PF Type Low(see Table 9)                                  | 1 | 1    | 2     |
| 43 | 40161 | 41071 | A3 PF Type High(see Table 9)                                 | 1 | 1    | 2     |
| 44 | 40162 | 41072 | A4 PF Type Low(see Table 9)                                  | 1 | 1    | 2     |
| 45 | 40163 | 41073 | A4 PF Type High(see Table 9)                                 | 1 | 1    | 2     |
| 46 | 40164 | 41074 | A1 PF direction(see Table 10)                                | 1 | 0    | 1     |
| 47 | 40165 | 41075 | A1 PF direction(see Table 10)                                | 1 | 0    | 1     |
| 48 | 40166 | 41076 | A1 PF direction(see Table 10)                                | 1 | 0    | 1     |
| 49 | 40167 | 41077 | A1 PF direction(see Table 10)                                | 1 | 0    | 1     |
|    |       |       |                                                              |   | -    |       |



Note: For read Use function code : 03-Read Holding Register Data Type : Decimal/Swapped float For write Use function code : 06/16-Write single/multiple Holding Register Data Type: Decimal/Swapped float Use function code 06 and data type decimal for 1 word length resister and for 2 word length resister Use function code 16 and data type Swapped float for writing.

**Note 1:** For writing to this Register Address use Function code 16 and select data type Swapped float. Also take care measurand range low should not equal or greater than measurand range High.

**Note 2:** Maximum CT & PT Ratio value is 99999999 i.e. maximum values is 9999.999 & minimum value is 1000 i.e. 1.000

For entering CT and Pt ratio refer the below example.

#### Example:

For entering CTR value 1234.567, convert 1234567 in to hexadecimal i.e. 2D687. Now enter lower four byte (D687) at 40111 and higher four byte (0012) at 40110 addresses respectively.

**Note 3:** If data type is **long** in MFT then set **Swapped long** in Modbus master. If data type is **float** MFT then set **Swapped Float** in Modbus master.

**Note 4:** ignore address which is not mentioned in the memory map as they are useful in 3P4W mode, do proper wiring as stated in Wiring detail section. Also Check the AO Parameters as mapping and Availability of particular Parameter is different for 3p4w and 3p3w; see Table 7 for more detail.

**Note 5:** Energy will be in Kilo for float value and for Long data type multiply with constant stated to get energy in Kilo unit.

**Note 6:** For changing the O/P type one also need to change the J2,J3,J5,J6,J7,J8 jumper on AO card and J8,J9 on Ethernet Card. put female jumper between pin 1&2 for current(4-20mA) o/p and 2&3 for Voltage o/p(0-10V).

#### Table 1:

| Parameter mapped to AO Channel | Min. Value        | Max. Value       |
|--------------------------------|-------------------|------------------|
| Frequency(Hz)                  | 0.0               | 65.0             |
| PF                             | -1.0              | 1.0              |
| Phase Voltage(V)               | 0.0               | 10,00,000.0      |
| Line Voltage(V)                | 0.0               | 10,00,000.0      |
| Current(A)                     | 0.0               | 10,000.0         |
| Active Power(W)                | -2,00,00,00,000.0 | 2,00,00,00,000.0 |
| Reactive Power(Var)            | -2,00,00,00,000.0 | 2,00,00,00,000.0 |
| Apparent Power(VA)             | 0.0               | 2,00,00,00,000.0 |

#### Table 2:

| Value | Energy type for Pulse Output |
|-------|------------------------------|
| 0     | KWh Import                   |
| 1     | KWh Export                   |
| 2     | KVarh - Import               |
| 3     | KVarh - Export               |
| 4     | KVAh                         |
| 5     | MWh Import                   |
| 6     | MWh Export                   |
| 7     | MVarh - Import               |
| 8     | MVarh - Export               |
| 9     | MVAh                         |



#### Table 3:

| Value | System Type |
|-------|-------------|
| 0     | 3P4W        |
| 1     | 3P3W        |

#### Table 4:

| Value(read only) | РҒ Туре |
|------------------|---------|
| 0                | Unity   |
| 1                | Lag     |
| 2                | Lead    |

#### Table 5:

| Value(write only) | Reset Energy Register |
|-------------------|-----------------------|
| 80                | Active Import         |
| 81                | Active Export         |
| 82                | Reactive Import       |
| 83                | Reactive Export       |
| 84                | Apparent              |
| 85                | All Energy            |

#### Table 6:

| Value | Data Type     |
|-------|---------------|
| 0     | Swapped Long  |
| 1     | Swapped Float |

#### Table 7:

| Value | AO Parameter mapping |                        |
|-------|----------------------|------------------------|
|       | 3P4W                 | 3P3W                   |
| 0     | R-Phase Frequency    | R_Y Phase Frequency    |
| 1     | Y-Phase Frequency    | -                      |
| 2     | B-Phase Frequency    | B_Y Phase Frequency    |
| 3     | System Frequency     | System frequency       |
| 4     | R Phase PF -         |                        |
| 5     | Y Phase PF -         |                        |
| 6     | B Phase PF           | -                      |
| 7     | System PF            | System PF              |
| 8     | R Phase Voltage      | R_Y Phase Voltage      |
| 9     | Y Phase Voltage      | B_R Phase Voltage      |
| 10    | B Phase Voltage      | B_Y Phase Voltage      |
| 11    | Average Voltage      | Average Voltage        |
| 12    | R_Y Phase Voltage    | -                      |
| 13    | B_R Phase Voltage    | -                      |
| 14    | B_Y Phase Voltage    | -                      |
| 15    | R Phase Current      | R Phase Current        |
| 16    | Y Phase Current      | -                      |
| 17    | B Phase Current      | B Phase Current        |
| 18    | Average Current      | Average Current        |
| 19    | R Phase Active Power | R_Y Phase Active Power |
| 20    | Y Phase Active Power | -                      |



| 21 | B Phase Active Power   | B_Y Phase Active Power   |  |
|----|------------------------|--------------------------|--|
| 22 | Total Active Power     | Total Active Power       |  |
| 23 | R Phase Reactive Power | R_Y Phase Reactive Power |  |
| 24 | Y Phase Reactive Power | -                        |  |
| 25 | B Phase Reactive Power | B_Y Phase Reactive Power |  |
| 26 | Total Reactive Power   | Total Reactive Power     |  |
| 27 | R Phase Apparent Power | R_Y Phase Apparent Power |  |
| 28 | Y Phase Apparent Power | -                        |  |
| 29 | B Phase Apparent Power | B_Y Phase Apparent Power |  |
| 30 | Total Apparent Power   | Total Apparent Power     |  |

#### Table 8:

| Value | Output Type                                           |  |
|-------|-------------------------------------------------------|--|
| 0     | Current 4-20mA                                        |  |
| 1     | Voltage 0-10V                                         |  |
| 2     | Disable(~0mA for current o/p & -0.7V for Voltage o/p) |  |

#### Table 9:

| Value | System Type |
|-------|-------------|
| 1     | Lag         |
| 2     | Lead        |

#### Table 10:

| Value | System Type   |
|-------|---------------|
| 0     | Anticlockwise |
| 1     | Clockwise     |



### **10. IMPORTANT NOTES**

Before starting Installed transducer, go through these notes:

- Confirm the connection configuration
- Confirm that all energy parameters are going to start from zero, if not, make them zero.
- Vrated and Irated should be set equal to PT secondary P-N Voltage and CT secondary Current Respectively.

• Apply proper CT – PT Ratio as per requirement, which must pass the below mathematical conditions for 3P3W and 3P4W.

For 3P4W

3x1.2xVratedx1.2xIratedx CT Ratio x PT Ratio < 200, 00, 00,000

For 3P3W

 $\sqrt{3x1.2x}\sqrt{3x}$ Vratedx1.2xIratedx CT Ratio x PT Ratio < 200, 00, 00,000

- Select Energy type for LED Blinking as per your requirement.
- Confirm that transducer is calibrated.
- For Serial communication, MODBUS-RTU, RS485, you will get float/long data from measurement.
- Factory set Password to access the Program mode is 0001.

• Some parameters in configuration are only for factory purposes so please don't disturb these parameters like Analog Output type.

• For 3p3w system, modbus communication, follow the address map for 3p3w.Program mode will be same.

• For Front Blinking LED, select energy type (i.e.-import/KWh-export/KVARh-Import/KVARh-Export/KVARh-Import/MWh-Export/MVARh-Import/MVARh-Export/MVAh) as per your requirement using Program mode, from OUTPUT and set the value of constant. But here you can get maximum output pulse frequency (& LED Blinking rate) up to 50 msec. so whenever you are using this feature; you should set value of Meter-Constant such a way so it will not cross the limit of 50 ms pulse frequency.

• As pulse frequency is 50 msec, i.e. in one second maximum 20 pulses can be obtained, hence in one hour maximum 72000 pulses can be obtained.

Total no of impulses/second can be calculated as below

(Vrate \* Irate \* CTR \* PTR \* Pulse Constant in Wh)/3600 <= 20.

- Example: transducer specification
- V rated = 240V, I rated = 5A, CT ratio = 40 and PT ratio = 100,
- Above transducer can consume maximum of 4.8MWatt.

I.e. For 3600 pulses/KWh [3.6 pulses/Wh], it will generate 4800 pulses/sec as per above equation, [240\*5\*40\*100\*3.6/3600 = 4800] so it will not work for the transducer as it is more than 20 pulses/sec

I.e. For 2000 pulses/MWh [0.002 pulses/Wh], it will generate 2.666 pulses/sec as per above equation, [240\*5\*40\*100\*0.002/3600 = 2.66] so it will work for the transducer as it is less than 20 pulses/sec

This is for single phase only, in case of three phases, energy will be multiplied by three in 3p4w and hence pulses should be calculated for three phase energy.

• When data type selected for modbus is LONG, Total apparent Energy will overflow from 400GVAhr the transducer will auto reset all energy parameter. This includes Active import and export energy, Reactive Import and Export energy and apparent energy. Such condition of overflow occurrence is depending on CT Ration and PT ratio.

• Example:

For 110V V rated, and 1 A I rated MFT is set for 100A and 66KV line with CT Ratio of 100 and PT Ratio of 600.

- Energy consumed per hour will be 66kV X 100Amps = 6600KVAHr.
- Time to overflow in Hr. = 400GVAhr / 6600KvaHr = 60606 Hr
- Days = 60606 /24 = 2525 Days



- Years = 2525 / 365 = 6.91 Years / Total of Three Phase.
- User has to manually reset all the energy parameter when installing the transducer first time.
- Resolution of the parameter on the Modbus when data is transmitted in LONG format is different and it is mention in modbus map.

• Provide uniform air flow for better cooling of transducers, inside the panels. This is most important when more than 10 units installed side by side in same panel.



### **11. TROUBLESHOOTING TIPS**

The information in Table 11– 1 describes potential problems and their possible causes. It also describes checks you can perform or possible solutions for each. After referring to this table, if you cannot resolve the problem, contact our sales representative.

#### Table 11– 1: Troubleshooting

| Potential Problem                                                                           | Possible Cause                                    | Possible Solution                                                                                                                                |
|---------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| The display is blank<br>with black light OFF<br>after applying control<br>power to the MFT. | The MFT may not be receiving the necessary Power. | Verify that the MFT line (L)<br>, neutral (N) and Earth (E) terminals are<br>Receiving the necessary power.                                      |
|                                                                                             | Incorrect setup values.                           | Check that the correct values have been<br>entered for MFT setup parameters (CT and<br>PT ratings, System Type).                                 |
| The data being displayed is inaccurate                                                      | Incorrect voltage inputs.                         | Check MFT voltage input terminals to verify that adequate voltage is present.                                                                    |
| or not what you expect.                                                                     | MFT is wired improperly.                          | Check that all CTs and PTs are connected<br>correctly (proper polarity is observed) and<br>that they are energized. Check shorting<br>terminals. |
| Cannot communicate                                                                          | MFT address is incorrect.                         | Check to see that the MFT is correctly addressed.                                                                                                |
| with MFT from<br>a remote personal<br>computer.                                             | MFT baud rate (parity, stop bit) is incorrect.    | Verify that the baud rate of the MFT matches the baud rate of all other devices on its communications link.                                      |
|                                                                                             | Communications lines are<br>improperly connected. | Verify the MFT communications<br>connections interchange [D+] & [D-] lines                                                                       |

#### UNIT NOT TURNING ON

The problem can be bad connection / power of incorrect rating.

First check, power on terminal of the instrument itself if it is not present then the fault is in power chord.

▲ One must take care while dealing with Power wirings because it may create electrical shock.

#### **UNSTABLE READING**

Check for loose connections.

First verify that all conventional instrumentation norms have been followed for wiring. Try using shielded cable for sensor input.

Check for ripple on power supplies of Input section and Output sections. If power supplies have ripples, input voltage may be low or there is some failure on power supply card.

▲ Please note that this is an isolator, and the Input and Output sections are electrically isolated from each other. Therefore, any power supply measurements should be done with respect to proper grounds.

#### OUTPUT NOT MATCHING WITH THE EXPECTED VALUE

It is a normal tendency to doubt the instrument performance, when the Output is not matching the expected value. Kindly make sure that the output is really incorrect with respect to input signal, before attempting any re-calibration.

Account for measuring instrument's inaccuracies, lead errors and calibration errors. Care must be taken when measuring Output signal.



An ordinary 3½ digit multimeter is used it can show reading which deviates from what the instrument is showing as the accuracy of the multimeter may not be as good as the that of the instrument. So use calibrating instrument of accuracy better than 0.1% for purpose of calibration.

If the signal is still found to be out of tolerance, calibration should be attempted as described in the next section.

#### VAGUE READING

The reason can be reverse input connections.

If these troubleshooting tips do not solve your problem then, please contact technical support at either nearest area office or Main Head Office as given on the first page.