masibus ation Manual A Sonepar Compan 0000

PROGRAMMABLE FREQUNECY TRANSDUCER

INTRODUCTION

The Masibus PDH frequency transducer measures the frequency of both sine wave and distorted waveforms of nominal input voltage with a fundamental frequency and converts this frequency input into a load-independent DC current or voltage output signal, with the output proportional to the measured frequency. It is equipped with two load independent, galvanically-isolated analogue outputs that can be configured for different input range and output curves. The output is usually linked to remote monitoring equipment such as RTU, recorders, PLC's, SCADA systems etc.

Available only in single phase version, externally powered.

Frequency transducers are having its application to interface with RTUs. Masibus make transducers are also available with dual output option. It provides accuracy class 0.2 with up to 3 KV isolation.

SPECIFICATIONS

Input:	
Measuring	40 to 70 Hz
Frequency Range	
Nominal Input	57.7 V to 500 V
Voltage	
Burden	<0.3VA at Un
Maximum	1.3 x Un Continuously
Overload voltage	2 x Un for 1 s, with up to 10 repetitions
	at 10 s intervals

Analogue output

Auxiliary Power Supply		
Voltage		
Common Mode	100 Vrms	
magnetic field		
External	0.5 mT	
Usage Group	I	
Ripple	<0.4% Peak to Peak	
Response time	<400 ms	
resistance	(for each output)	
Maximum load	\leq 750 Ω for 20 mA, \geq 2 k Ω for 10 V	
Output type	4-20mA, 0-20mA, 0-10V, 0-5V, 1-5V DC	
No. of Outputs	2	
Accuracy Class	0.2 as per IEC60688 standard	

Universal Aux. Supply :85-265VAC, 50/60Hz or 100-300VDC

Operation Manual	Power Supply	Burden : < 5.5VA (2.2W)	Mechanical
PDH		DC Aux. Supply : 20-60VDC	Isometric v
		Burden : < 2.2W	
3000 V AC for 1 Between primary Between seconda * Primary termin terminals.		minals* and secondary terminals**: At least	

** Secondary terminals indicate analogue O/P-1 and analogue O/P-2.

Insulation resistance: 200M Ω or more at 500 V DC between Input/Output/Power/Case and grounding terminal

Environmental

Operating temperature	010 <u>23</u> 3555⁰C
Storage temperature	-40 to 85°C
Relative humidity	25-95% non-condensing
Pre-conditioning	30 min acc. to IEC 60688
Installation Category	CAT III for < 300V AC
Protection Class	II
Pollution Degree	2
Ingress protection	Housing IP40, Terminals IP20
Physical	
Mounting Type	DIN Rail
Dimension (in mm)	71H x 61W x 112D
Case Material	ABS
Weight	0.4 Kg
Connector type	Metal Screw
Conductor size for	$\leq 4 \text{ mm}^2$
terminals	

Communication ports

Mini USB type: For on-site configuration

INPUT - OUTPUT SIGNAL CURVES Curve A: Curve B: Linear Linear with live zero Output Output Input Input Curve C: Curve D: Compressed upper region Compressed lower region Output Output

Input

al Dimensions

view

71 mm Π \bigcirc 12 mm 61 mm

Installation details

SAFETY/WARNING PRECAUSTIONS

To ensure that the device can be operated safely, and all functions can be used, please read these instructions carefully.

Installation and Start-up must be carried out by gualified personnel only. The relevant county-specific regulations must also be observed.

Before start-up it is particularly important to ensure: • Terminal wiring: check that all cables are correctly

connected according to the connection diagram • All wiring must confirm to appropriate standards of good practice and local codes and regulations. Wiring must be suitable for voltage, current and temperature rating of the system.

• Unused control terminals should not be used as jumper points as they may be internally connected, which may cause damage to the unit.

TERMINAL CONNECTION

Input

Terminal No.	Description	
1 A1 + 2 A1 -	For Analog Output -1	
3 A2 + 4 A2 -	For Analog Output -2	
7 INPUT V 8 INPUT N	For Voltage Input	
9 L/+ 10 N/-	Aux. Power Supply Input	

FRONT PANEL DESCRIPTION

Symbol	Function	
PWR	ON when unit is power up with Aux. Supply	
PGM	Communication port for Parameter configuration	

PTs

Large electrical installations have high voltages which may exceed the direct connection rating of the PDH. In this case, Potential Transformers (PTs)care used to precisely "step down" or reduce the voltage level to suit the Transducer rating. Potential Transformers usually have a full-scale output of 110V/240V ac.

The PTs (Potential Transformers) must be planned, installed and tested by a qualified electrical contractor before wiring the transducer. The accuracy of the measurement also depends on the accuracy of the PTs.

Instrument Class 1 or better PTs are recommended.

PT WIRING

The PTs must have adequate VA rating to support the burden (loading) on the secondary. You may want to support the auxiliary supply burden from one of the PTs.

PDH should be conveniently located for easy connections of voltage (PT) signal.

Terminal Wiring Details 1. 1-phase 2-wire direct connection $\otimes \otimes \otimes \otimes \otimes \otimes$ PDH masibus \otimes \otimes \otimes \otimes \otimes \otimes

2. 1-phase 2-wire using CT/PT connection

Jumper Setting for Output

Type of output (current or voltage signal) has to be set by the Jumper Setting.

For Setting of Jumper the user needs to open the transducer housing & set the jumper located on PCB to the desired output type Voltage or Current. Output range changing is not possible with jumper setting. Refer below Fig. for jumper setting.

Jumper Setting	Type of Output Signal
Jumper 3&4 Short, 1&2 Open	load-independent current
Jumper 1&2 Short, 3&4 Open	load-independent voltage

TROUBLESHOOTING TIPS

The information in Table-1 describes potential problems and their possible causes. It also describes checks you can perform or possible solutions for each. After referring to this table, if you cannot resolve the problem, contact our sales representative.

Table-1: Troubleshooting

Potential Problem	Possible Cause	Possible Solution
The Power Led OFF after applying control Power to the PDH	The PDH may not be receiving the necessary Power.	Verify that the PDH line (L) and neutral (N) terminals are Receiving the necessary power.
The data being displayed is inaccurate or not what you expect.	Incorrect setup values.	Check that the correct values have been entered for PDH setup parameters (PT ratings, Output setting).
, ea expect	Incorrect	Check PDH voltage input

Issue No.:00

voltage inputs.	terminals to verify that adequate voltage is present.
PHD is wired improperly.	Check that all PTs are connected correctly and that they are energized. Check shorting terminals.

UNIT NOT TURNING ON

The problem can be bad connection / power of incorrect rating.

First check, power on terminal of the instrument itself if it is not present then the fault is in power cable.

One must take care while dealing with Power wirings because it may create electrical shock.

UNSTABLE READING

Check for loose connections.

First verify that all conventional instrumentation norms have been followed for wiring.

Check for ripple on power supplies of Input section and Output sections. If power supplies have ripples, input voltage may be low or there is some failure on power supply card.

OUTPUT NOT MATCHING WITH THE EXPECTED VALUE It is a normal tendency to doubt the instrument performance when the Output is not matching the expected value. Kindly make sure that the output is incorrect with respect to input signal, before attempting any re-calibration.

Account for measuring instrument's inaccuracies, lead errors and calibration errors. Care must be taken when measuring Output signal.

An ordinary 3½ digit multimeter is used it can show reading which deviates from what the instrument is showing as the accuracy of the multimeter may not be as good as the that of the instrument. So use calibrating instrument of accuracy better than 0.1% for purpose of calibration.

If these troubleshooting tips do not solve your problem then, please contact technical support at either nearest area office or Main Head Office as given on the first page.

For operation manual please visit <u>www.masibus.com</u> Specifications are subject to change without notice due to Continuous improvements. **Masibus Automation And Instrumentation Pvt. Ltd.** B-30, GIDC Electronics Estate, Sector-25, Gandhinagar-382044, Gujarat, India. Tel: +91 79 23287275-77 Fax: +91 79 23287281 Web:<u>www.masibus.com</u> Email:<u>support@masibus.com</u>